--- language: - fi license: apache-2.0 base_model: openai/whisper-large-v3 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: Whisper Large v3 Fine-Tuned Finnish results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 13.0 type: mozilla-foundation/common_voice_13_0 config: fi split: test metrics: - name: Wer type: wer value: 23.707 --- # Whisper Large v3 Fine-Tuned Finnish This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on the Common Voice 13.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2178 - Wer: 23.707 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: polynomial - lr_scheduler_kwargs = { 'lr_end': 1e-07 } - training_steps: 800 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.6193 | 0.21 | 50 | 0.2905 | 29.1920 | | 0.3171 | 0.84 | 200 | 0.3 | 27.02 | | 0.1224 | 1.68 | 400 | 0.2906 | 28.115 | | 0.041 | 2.53 | 600 | 0.2477 | 25.179 | | 0.0098 | 3.37 | 800 | 0.2178 | 23.707 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.0.1 - Datasets 2.16.1 - Tokenizers 0.15.0