File size: 2,111 Bytes
afff5ed 4c86093 afff5ed 4c86093 afff5ed 4c86093 afff5ed 4c86093 afff5ed 4c86093 afff5ed 4c86093 afff5ed 4c86093 afff5ed 4c86093 afff5ed 4c86093 afff5ed 4c86093 afff5ed 4c86093 afff5ed 4c86093 afff5ed 4c86093 afff5ed 4c86093 afff5ed 4c86093 afff5ed 4c86093 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
language:
- fi
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_13_0
metrics:
- wer
model-index:
- name: Whisper Large v3 Fine-Tuned Finnish
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 13.0
type: mozilla-foundation/common_voice_13_0
config: fi
split: test
metrics:
- name: Wer
type: wer
value: 23.707
---
# Whisper Large v3 Fine-Tuned Finnish
<!-- Provide a quick summary of what the model is/does. -->
This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on the Common Voice 13.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2178
- Wer: 23.707
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- lr_scheduler_kwargs = { 'lr_end': 1e-07 }
- training_steps: 800
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.6193 | 0.21 | 50 | 0.2905 | 29.1920 |
| 0.3171 | 0.84 | 200 | 0.3 | 27.02 |
| 0.1224 | 1.68 | 400 | 0.2906 | 28.115 |
| 0.041 | 2.53 | 600 | 0.2477 | 25.179 |
| 0.0098 | 3.37 | 800 | 0.2178 | 23.707 |
### Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.0.1
- Datasets 2.16.1
- Tokenizers 0.15.0
|