File size: 2,111 Bytes
afff5ed
4c86093
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afff5ed
 
4c86093
afff5ed
 
4c86093
 
 
 
afff5ed
4c86093
afff5ed
4c86093
afff5ed
4c86093
afff5ed
4c86093
afff5ed
4c86093
afff5ed
4c86093
afff5ed
4c86093
afff5ed
4c86093
afff5ed
4c86093
 
 
 
 
 
 
 
 
 
 
 
afff5ed
4c86093
afff5ed
4c86093
 
 
 
 
 
 
afff5ed
4c86093
afff5ed
4c86093
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
language:
  - fi
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_13_0
metrics:
  - wer
model-index:
  - name: Whisper Large v3 Fine-Tuned Finnish
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 13.0
          type: mozilla-foundation/common_voice_13_0
          config: fi
          split: test
        metrics:
          - name: Wer
            type: wer
            value: 23.707
---

# Whisper Large v3 Fine-Tuned Finnish

<!-- Provide a quick summary of what the model is/does. -->
This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on the Common Voice 13.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2178
- Wer: 23.707

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- lr_scheduler_kwargs = { 'lr_end': 1e-07 }
- training_steps: 800
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.6193        | 0.21  | 50   | 0.2905          | 29.1920 |
| 0.3171        | 0.84  | 200  | 0.3             | 27.02   |
| 0.1224        | 1.68  | 400  | 0.2906          | 28.115  |
| 0.041         | 2.53  | 600  | 0.2477          | 25.179  |
| 0.0098        | 3.37  | 800  | 0.2178          | 23.707  |

### Framework versions

- Transformers 4.37.0.dev0
- Pytorch 2.0.1
- Datasets 2.16.1
- Tokenizers 0.15.0