--- license: apache-2.0 tags: - generated_from_trainer datasets: - cnn_dailymail model-index: - name: QLoRA-Flan-T5-Small results: [] --- # QLoRA-Flan-T5-Small This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co./google/flan-t5-small) on the cnn_dailymail dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## How to use model 1. Loading the model '''python import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForSeq2SeqLM, AutoTokenizer # Load peft config for pre-trained checkpoint etc. peft_model_id = "emonty777/QLoRA-Flan-T5-Small" config = PeftConfig.from_pretrained(peft_model_id) # load base LLM model and tokenizer / runs on CPU model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path) tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) # load base LLM model and tokenizer for GPU model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path, load_in_8bit=True, device_map={"":0}) tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) # Load the Lora model model = PeftModel.from_pretrained(model, peft_model_id, device_map={"":0}) model.eval() ''' ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results Evaluated on full CNN Dailymail test set 'rouge-1': {'r': 0.3484396421841008, 'p': 0.37845620239152916, 'f': 0.3484265780526604}, 'rouge-2': {'r': 0.1472418310455188, 'p': 0.15418276080118026, 'f': 0.14343059577230782}, 'rouge-l': {'r': 0.3280567401095563, 'p': 0.3565504002457199, 'f': 0.32809541498574013} ### Framework versions - Transformers 4.27.1 - Pytorch 2.0.1+cu118 - Datasets 2.9.0 - Tokenizers 0.13.3