File size: 2,162 Bytes
9c1eda0 b4bba63 9c1eda0 b4bba63 9c1eda0 b4bba63 9c1eda0 b4bba63 9c1eda0 b4bba63 9c1eda0 b4bba63 9c1eda0 b4bba63 9c1eda0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
language:
- el
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small Farsipal and El Greco
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_11_0 el
type: mozilla-foundation/common_voice_11_0
config: el
split: test
args: el
metrics:
- name: Wer
type: wer
value: 17.189821693907874
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Farsipal and El Greco
This model is a fine-tuned version of [emilios/whisper-sm-el-farsipal-e3](https://huggingface.co./emilios/whisper-sm-el-farsipal-e3) on the mozilla-foundation/common_voice_11_0 el dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5430
- Wer: 17.1898
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-06
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0015 | 9.35 | 1000 | 0.5405 | 17.6913 |
| 0.001 | 18.69 | 2000 | 0.5396 | 17.5613 |
| 0.0009 | 28.04 | 3000 | 0.5620 | 17.4963 |
| 0.001 | 37.38 | 4000 | 0.5454 | 17.4591 |
| 0.0015 | 46.73 | 5000 | 0.5430 | 17.1898 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 2.0.0.dev20221216+cu116
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|