email81227 commited on
Commit
ef0b383
·
1 Parent(s): df62afb

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -1,11 +1,10 @@
1
  ---
 
2
  tags:
3
  - LunarLander-v2
4
- - ppo
5
  - deep-reinforcement-learning
6
  - reinforcement-learning
7
- - custom-implementation
8
- - deep-rl-course
9
  model-index:
10
  - name: PPO
11
  results:
@@ -17,45 +16,22 @@ model-index:
17
  type: LunarLander-v2
18
  metrics:
19
  - type: mean_reward
20
- value: -163.91 +/- 103.27
21
  name: mean_reward
22
  verified: false
23
  ---
24
 
25
- # PPO Agent Playing LunarLander-v2
 
 
26
 
27
- This is a trained model of a PPO agent playing LunarLander-v2.
28
-
29
- # Hyperparameters
30
- ```python
31
- {'exp_name': 'test'
32
- 'seed': 1
33
- 'torch_deterministic': True
34
- 'cuda': True
35
- 'track': False
36
- 'wandb_project_name': 'cleanRL'
37
- 'wandb_entity': None
38
- 'capture_video': False
39
- 'env_id': 'LunarLander-v2'
40
- 'total_timesteps': 50000
41
- 'learning_rate': 0.00025
42
- 'num_envs': 4
43
- 'num_steps': 128
44
- 'anneal_lr': True
45
- 'gae': True
46
- 'gamma': 0.99
47
- 'gae_lambda': 0.95
48
- 'num_minibatches': 4
49
- 'update_epochs': 4
50
- 'norm_adv': True
51
- 'clip_coef': 0.2
52
- 'clip_vloss': True
53
- 'ent_coef': 0.01
54
- 'vf_coef': 0.5
55
- 'max_grad_norm': 0.5
56
- 'target_kl': None
57
- 'repo_id': 'email81227/ppo-LunarLander-v2'
58
- 'batch_size': 512
59
- 'minibatch_size': 128}
60
- ```
61
-
 
1
  ---
2
+ library_name: stable-baselines3
3
  tags:
4
  - LunarLander-v2
 
5
  - deep-reinforcement-learning
6
  - reinforcement-learning
7
+ - stable-baselines3
 
8
  model-index:
9
  - name: PPO
10
  results:
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 237.79 +/- 20.90
20
  name: mean_reward
21
  verified: false
22
  ---
23
 
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
 
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb122078670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb122078700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb122078790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb122078820>", "_build": "<function ActorCriticPolicy._build at 0x7fb1220788b0>", "forward": "<function ActorCriticPolicy.forward at 0x7fb122078940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb1220789d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb122078a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb122078af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb122078b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb122078c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb122078ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb12207a940>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680101378325501315, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJoGqjxqvsA/HlUTPoU9KD411BI9C/XaPQAAAAAAAAAAM0/5PJzDTD8Aoos92n7cvhZYqD2TuL87AAAAAAAAAADzQ8G9Pds5u+awJD4jhg2+QazMvOiEPr8AAIA/AACAPzOfCDwp2Fm66jcvs7GCe65EvmK5KKLTMwAAgD8AAIA/Te5Cvh4TGT+rJKw93/WrvjFelb0WDeS9AAAAAAAAAAAzxOA8FNiSugU6bLVGRGWw+YSZOlv5qzQAAIA/AACAP6DLeb5KUiq9VR17u15uFLqP6JQ+9azeOgAAgD8AAIA/wP+GPqNfFj+CKQm+nuvBvjMCgj6GznK+AAAAAAAAAADNPE+9zW67P5H0IL9VClE+7b5hPYSBwD0AAAAAAAAAAJofGj7Ppp4+sQXCvssJWb4wTre9OG3ovQAAAAAAAAAAzSo/PK75krpJcrE74mGoOOdooToyOma4AACAPwAAgD8afQy9ylofP2ta7T05RJe+6vWfvIWdhD0AAAAAAAAAALMkjr17vr26Xt5JO2/bpTeV3Yq5dtIVugAAgD8AAIA/ZmMRvas3tj4dLae9GzmGvl+LBL3Sqgq7AAAAAAAAAABN2mm9uAyyu+LrGTsFYo08ODQWvQoNcD0AAIA/AACAP2Ys2ryunam6YptyOIwGgjUdENC4ZjKMtwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJLn8h7R1ckCUhpRSlIwBbJRNPQGMAXSUR0CUZ2vPTodNdX2UKGgGaAloD0MIO1J95xflcECUhpRSlGgVTR0BaBZHQJRpYM2FWXF1fZQoaAZoCWgPQwi22O2zCtpzQJSGlFKUaBVNBQFoFkdAlGmYuTRplHV9lChoBmgJaA9DCOrnTUUqiW1AlIaUUpRoFU0SAWgWR0CUabOu7pV0dX2UKGgGaAloD0MIcsRafEplcECUhpRSlGgVTT0BaBZHQJRpwR15jYt1fZQoaAZoCWgPQwifAIqRpVFyQJSGlFKUaBVNLQFoFkdAlGp6/Efkm3V9lChoBmgJaA9DCM5twr0yb3NAlIaUUpRoFU0cAWgWR0CUaxVN5+pgdX2UKGgGaAloD0MIA2A8gwZ1cECUhpRSlGgVTUgBaBZHQJRrTTjNpud1fZQoaAZoCWgPQwg0hc5rbM1uQJSGlFKUaBVNDgFoFkdAlGwMhTwUg3V9lChoBmgJaA9DCJpfzQGCI29AlIaUUpRoFU0EAWgWR0CUbFZLqUu+dX2UKGgGaAloD0MIAIxn0NAvckCUhpRSlGgVTUQBaBZHQJRtCL2pQ1t1fZQoaAZoCWgPQwiuRnalZRZwQJSGlFKUaBVNLgFoFkdAlG35EYwZfnV9lChoBmgJaA9DCNB/D157NXNAlIaUUpRoFU1FAWgWR0CUb3K6FuejdX2UKGgGaAloD0MI2liJeZaacECUhpRSlGgVTRsBaBZHQJRwsCA+Y+l1fZQoaAZoCWgPQwjwbmWJDgxwQJSGlFKUaBVL/WgWR0CUcbNy5qdpdX2UKGgGaAloD0MINxlVhvFXcECUhpRSlGgVTQYBaBZHQJRx0eo1k2B1fZQoaAZoCWgPQwhKB+v/HLFxQJSGlFKUaBVL7mgWR0CUcm+6iCardX2UKGgGaAloD0MIWfj6WhfncUCUhpRSlGgVTWMBaBZHQJRyzaZhKDl1fZQoaAZoCWgPQwjnbtdL05BxQJSGlFKUaBVNDgFoFkdAlHNKL0jC53V9lChoBmgJaA9DCOo9ldPejHBAlIaUUpRoFUvhaBZHQJRzoYaYNRZ1fZQoaAZoCWgPQwj3PH/aqMxxQJSGlFKUaBVNHwFoFkdAlHOpwXIlt3V9lChoBmgJaA9DCNBGrpsSwHFAlIaUUpRoFU0iAWgWR0CUc+/QjUutdX2UKGgGaAloD0MIZRu4AzWRcECUhpRSlGgVTRQBaBZHQJRz/8vVVgh1fZQoaAZoCWgPQwjHnj2X6UxxQJSGlFKUaBVNDAFoFkdAlHQc0pEx7HV9lChoBmgJaA9DCIdSexHtbm9AlIaUUpRoFU0hAWgWR0CUdKcmjTKDdX2UKGgGaAloD0MIOL9hosEQckCUhpRSlGgVTSEBaBZHQJR1V77bcoJ1fZQoaAZoCWgPQwjHYptUNJ5xQJSGlFKUaBVNBwFoFkdAlHW9IXj2jHV9lChoBmgJaA9DCMMq3sh8EnFAlIaUUpRoFU0lAWgWR0CUddbtqpLmdX2UKGgGaAloD0MIxAd2/JdNbUCUhpRSlGgVTSQBaBZHQJR3QfzSThZ1fZQoaAZoCWgPQwgeNpGZCw5FQJSGlFKUaBVL4mgWR0CUd1g6ltTDdX2UKGgGaAloD0MIvmn67EDeckCUhpRSlGgVTSgBaBZHQJR4M1wYLst1fZQoaAZoCWgPQwhd4sgDkdtyQJSGlFKUaBVL7GgWR0CUeROu7pV0dX2UKGgGaAloD0MIjln2JLAfcUCUhpRSlGgVTSgBaBZHQJR5TtjTa0x1fZQoaAZoCWgPQwhqoPmcu0dzQJSGlFKUaBVNFQFoFkdAlHqlJlJ6IHV9lChoBmgJaA9DCJZcxeJ3BHJAlIaUUpRoFU0LAWgWR0CUeq8jAzpHdX2UKGgGaAloD0MIYviImNK3cUCUhpRSlGgVTRYBaBZHQJR7EWykbgl1fZQoaAZoCWgPQwiZZyWtuIlxQJSGlFKUaBVNIgFoFkdAlHsPpt78enV9lChoBmgJaA9DCATj4NJx2HBAlIaUUpRoFU1XAWgWR0CUe1T72tdSdX2UKGgGaAloD0MILlkV4WbVckCUhpRSlGgVS+5oFkdAlHuIubqhUXV9lChoBmgJaA9DCM2U1t+SQXJAlIaUUpRoFU1SAWgWR0CUe4WHUMG5dX2UKGgGaAloD0MInnjOFlA6cUCUhpRSlGgVTSYBaBZHQJR8NkVeruJ1fZQoaAZoCWgPQwjRXKeRlrpuQJSGlFKUaBVNGwFoFkdAlH0SxiXpn3V9lChoBmgJaA9DCMAIGjNJgXBAlIaUUpRoFU1SAWgWR0CUfsXpW3jNdX2UKGgGaAloD0MIiSZQxGIlcUCUhpRSlGgVTRUBaBZHQJR+zuv2XcB1fZQoaAZoCWgPQwjCNAwf0eVxQJSGlFKUaBVNvQFoFkdAlJK+NxVAA3V9lChoBmgJaA9DCMDo8ubwDG9AlIaUUpRoFU0PAWgWR0CUk6DQZ4wAdX2UKGgGaAloD0MIxjU+kz2PckCUhpRSlGgVTTcBaBZHQJST4XAM2FZ1fZQoaAZoCWgPQwgzUu+pnDxvQJSGlFKUaBVNYwFoFkdAlJQe+M6zV3V9lChoBmgJaA9DCGoy420l3XBAlIaUUpRoFUv0aBZHQJSVRNmDlHV1fZQoaAZoCWgPQwhN845T9ItsQJSGlFKUaBVNHQFoFkdAlJWQpWmxdXV9lChoBmgJaA9DCNEF9S1zDW1AlIaUUpRoFU0HAWgWR0CUlaL0Bfa6dX2UKGgGaAloD0MI+kUJ+ov7bkCUhpRSlGgVTSEBaBZHQJSVtxXGOuJ1fZQoaAZoCWgPQwgx68VQjl5zQJSGlFKUaBVNVQFoFkdAlJXe/gzguXV9lChoBmgJaA9DCJRrCmS2unBAlIaUUpRoFU0iAWgWR0CUlg30PH1fdX2UKGgGaAloD0MIqi11kBc6cUCUhpRSlGgVTSkBaBZHQJSWO5uqFRJ1fZQoaAZoCWgPQwi4VnvYy+5wQJSGlFKUaBVNGAFoFkdAlJZCfg75mHV9lChoBmgJaA9DCPkUAOMZVFJAlIaUUpRoFUvDaBZHQJSXC48U21l1fZQoaAZoCWgPQwhmh/iHLfxsQJSGlFKUaBVNOgFoFkdAlJersF+uvHV9lChoBmgJaA9DCAg8MIDw7TlAlIaUUpRoFUvTaBZHQJSYWrELpiZ1fZQoaAZoCWgPQwhEUDV6NVVuQJSGlFKUaBVNBQFoFkdAlJj5/0/W2HV9lChoBmgJaA9DCB9q2zAK7m5AlIaUUpRoFU1XAWgWR0CUmdItlI3BdX2UKGgGaAloD0MISMX/HZGAckCUhpRSlGgVS/BoFkdAlJteE/Spi3V9lChoBmgJaA9DCF/Tg4JSO3BAlIaUUpRoFU0DAWgWR0CUm8zEaVD8dX2UKGgGaAloD0MIL6NYbmmPbUCUhpRSlGgVTQwBaBZHQJSbzilzltF1fZQoaAZoCWgPQwivBigNNW5vQJSGlFKUaBVNAwFoFkdAlJ5gxWT5f3V9lChoBmgJaA9DCJLM6h2ux3FAlIaUUpRoFU0IAWgWR0CUn1axHG0edX2UKGgGaAloD0MIa5p3nCIhcUCUhpRSlGgVTRwBaBZHQJSfe4G2TgV1fZQoaAZoCWgPQwjFjzF3LVdyQJSGlFKUaBVNIQFoFkdAlJ+akhzNlnV9lChoBmgJaA9DCL0A++hUMXBAlIaUUpRoFU0OAWgWR0CUn+YVqN6xdX2UKGgGaAloD0MIsHJokW03c0CUhpRSlGgVTSUBaBZHQJSgPftQbdd1fZQoaAZoCWgPQwibj2tDRetuQJSGlFKUaBVNQAFoFkdAlKB/wEyLynV9lChoBmgJaA9DCOWAXU0eaW5AlIaUUpRoFU1DAWgWR0CUof1xbSqmdX2UKGgGaAloD0MIX7THC6kvcECUhpRSlGgVTSIBaBZHQJSiMQYk3S91fZQoaAZoCWgPQwjaOGItPs5xQJSGlFKUaBVL9mgWR0CUov5hScbzdX2UKGgGaAloD0MIdvpBXaSEckCUhpRSlGgVTSABaBZHQJSjGrksBhh1fZQoaAZoCWgPQwjTMlLvaXhwQJSGlFKUaBVNEAFoFkdAlKNSRKYiPnV9lChoBmgJaA9DCHlzuFb7SHFAlIaUUpRoFU0YAWgWR0CUpP0bLlmwdX2UKGgGaAloD0MI7URJSKSVcUCUhpRSlGgVTRIBaBZHQJSmqZof0Vd1fZQoaAZoCWgPQwjrHAOy18FvQJSGlFKUaBVL92gWR0CUqWjH4oJBdX2UKGgGaAloD0MIiZl9HmO5cECUhpRSlGgVTQ8BaBZHQJSqrd+G47R1fZQoaAZoCWgPQwgeqFMe3T1xQJSGlFKUaBVNKwFoFkdAlKsrM9r433V9lChoBmgJaA9DCE0s8BUdenFAlIaUUpRoFU0ZAWgWR0CUq+OUdJardX2UKGgGaAloD0MIL4hITbuEb0CUhpRSlGgVTSsBaBZHQJSsREpiI+J1fZQoaAZoCWgPQwgnwoan11ZuQJSGlFKUaBVNDQFoFkdAlK1UcXFcZHV9lChoBmgJaA9DCLlSz4JQpHBAlIaUUpRoFU24AWgWR0CUrh1uR9w4dX2UKGgGaAloD0MIm3EaogpgcECUhpRSlGgVTSYBaBZHQJSuYRoRIz51fZQoaAZoCWgPQwj3cwry89pwQJSGlFKUaBVNWgFoFkdAlK5tdJJ5FHV9lChoBmgJaA9DCArXo3A95nFAlIaUUpRoFU1VAWgWR0CUrntp22XtdX2UKGgGaAloD0MIOIQqNXvHcUCUhpRSlGgVTRgBaBZHQJSuz/EOy3V1fZQoaAZoCWgPQwit+IbCZ0huQJSGlFKUaBVNJAFoFkdAlK7oQvpQlHV9lChoBmgJaA9DCECGjh2UBnFAlIaUUpRoFU01AWgWR0CUr1h8YyfudX2UKGgGaAloD0MISbw8nauOckCUhpRSlGgVTTMBaBZHQJSwn1Iy0rt1fZQoaAZoCWgPQwjfGtgqwYBAQJSGlFKUaBVL3WgWR0CUsp/kNnXedX2UKGgGaAloD0MIc9cS8oH5cUCUhpRSlGgVTVABaBZHQJSysURFqi51fZQoaAZoCWgPQwhBg02dB+FwQJSGlFKUaBVNJQFoFkdAlLMjefqX4XV9lChoBmgJaA9DCFbzHJEvZnBAlIaUUpRoFU0fAWgWR0CUs5Jhvze5dX2UKGgGaAloD0MIibFMv4Q7cUCUhpRSlGgVTSABaBZHQJSz5jgAIY51fZQoaAZoCWgPQwjzy2CMyMxsQJSGlFKUaBVNIAFoFkdAlLRQ+QlrunV9lChoBmgJaA9DCIbKv5ZX6HBAlIaUUpRoFU0iAWgWR0CUtbpOvdM1dX2UKGgGaAloD0MICaaaWYv5ckCUhpRSlGgVTREBaBZHQJS14qZtvXN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdc85498820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdc854988b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdc85498940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdc854989d0>", "_build": "<function ActorCriticPolicy._build at 0x7fdc85498a60>", "forward": "<function ActorCriticPolicy.forward at 0x7fdc85498af0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fdc85498b80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdc85498c10>", "_predict": "<function ActorCriticPolicy._predict at 0x7fdc85498ca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdc85498d30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdc85498dc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdc85498e50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fdc8548bf00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682798765866691588, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEbcO77IPIW8viewupI/2LgaYeM9AvbdOQAAgD8AAIA/Wo+0vZ+moLvHLoE8DaqFPH986TylW2S9AACAPwAAgD+9uIO+SGiQP6sG8b2dsZq+nKBFvtinsT0AAAAAAAAAADOIAb34vao9dcl4PC8MJr4KeLk8DXyUPAAAAAAAAAAA5hh6vU7AgT0V1QC+S37pvfVdo72hhpy9AAAAAAAAAADmpeu9CvYRu7/TCD7FQQC+YhCmvXb/kr4AAIA/AAAAAGZmy7iuo5q6euAnOpNu9rgmBAC72FU0uQAAgD8AAIA/wM3QvbzrLT7oDRU9Z9Fqvr7kET023Os8AAAAAAAAAAAAiSM9AZiuvNuQtb0j1qy7xUMHuzjFVz0AAIA/AACAP2bVkLx4xLw8t5OmvTEqLr6b3Am9fd4+vQAAAAAAAAAA2g3nPb6mqT+aivw+y5Civsc6AD4CRW0+AAAAAAAAAAAI6Ky+A3tZP1rTWz4yi3a+T5FuvfsPWD0AAAAAAAAAAHqWmj6f0gQ/YhXmvb+VlL5C5Lc9gUyBvQAAAAAAAAAAAHKvPjAfwj5Ol3y+kGkhvn1PkT1LkZu8AAAAAAAAAACz7nM+8eexPxgvFz9r2qO+sB+RPkQhMz4AAAAAAAAAAND7f74vukI/dqXlPfwFiL73FB69pixRPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMXpuoStAbECUhpRSlIwBbJRNRAGMAXSUR0CSXEzZpSJkdX2UKGgGaAloD0MI7fDXZI3bbECUhpRSlGgVTVUBaBZHQJJc0+3Ytg91fZQoaAZoCWgPQwjw/KIEPZFxQJSGlFKUaBVNPAFoFkdAkl6cUuctoXV9lChoBmgJaA9DCGCvsOD+bG5AlIaUUpRoFU2UAWgWR0CSXrreZXuFdX2UKGgGaAloD0MInL8JhUgxckCUhpRSlGgVTT8BaBZHQJJfkv0yxiZ1fZQoaAZoCWgPQwgI6SlyiFNwQJSGlFKUaBVNhAFoFkdAknRkM9bHInV9lChoBmgJaA9DCKmj42pkvm5AlIaUUpRoFU0lAWgWR0CSd0aDwpfAdX2UKGgGaAloD0MIt9WsMz7rckCUhpRSlGgVTVgBaBZHQJJ4CqGUOd51fZQoaAZoCWgPQwiVKlH2lnxOQJSGlFKUaBVNEwFoFkdAknjTIaLn93V9lChoBmgJaA9DCHoYWp1cY3BAlIaUUpRoFU0oAWgWR0CSeNY4hllLdX2UKGgGaAloD0MIwr0yb1X8bkCUhpRSlGgVTY4BaBZHQJJ566tknTl1fZQoaAZoCWgPQwjNeFvptUZsQJSGlFKUaBVNWwFoFkdAknot+9allHV9lChoBmgJaA9DCHcwYp+ACXFAlIaUUpRoFU1HAWgWR0CSei/Zdv87dX2UKGgGaAloD0MIbXL4pBPFbUCUhpRSlGgVTTABaBZHQJJ78b0e2eB1fZQoaAZoCWgPQwgVqpuLf+1wQJSGlFKUaBVNSAFoFkdAknwekcjqwHV9lChoBmgJaA9DCJJYUu6+mGtAlIaUUpRoFU1oAWgWR0CSfPRVZLZjdX2UKGgGaAloD0MI71nXaPkXcECUhpRSlGgVTXoBaBZHQJJ9W8VYZEV1fZQoaAZoCWgPQwhFEOfhhIdvQJSGlFKUaBVNPAFoFkdAkn5/WUbDM3V9lChoBmgJaA9DCAMF3slnY3BAlIaUUpRoFU1kAWgWR0CSf7gIQe3hdX2UKGgGaAloD0MI4UbKFskLcECUhpRSlGgVTTABaBZHQJKBXfMwDeV1fZQoaAZoCWgPQwgPDYtRlzpyQJSGlFKUaBVNigFoFkdAkoJbehwl0HV9lChoBmgJaA9DCNqM0xBVa29AlIaUUpRoFU0mAWgWR0CSg3Pi1iOOdX2UKGgGaAloD0MIe7374736a0CUhpRSlGgVTVcBaBZHQJKE6RcNYr91fZQoaAZoCWgPQwhr09heC9RwQJSGlFKUaBVNNgFoFkdAkoWpYxL0z3V9lChoBmgJaA9DCNv7VBVaDHFAlIaUUpRoFU1RAWgWR0CShcovzvqkdX2UKGgGaAloD0MIr1+wGzaDa0CUhpRSlGgVTUwBaBZHQJKILPdEb5x1fZQoaAZoCWgPQwj7eOi7W7dxQJSGlFKUaBVNdQFoFkdAkohO+23KCHV9lChoBmgJaA9DCG7eOClMqmlAlIaUUpRoFU2JAWgWR0CSiPYQ8OkMdX2UKGgGaAloD0MITl/P12wOcECUhpRSlGgVTXMBaBZHQJKKBAiV0Ld1fZQoaAZoCWgPQwjjGTT0D9dxQJSGlFKUaBVNaQFoFkdAkosqzeGfw3V9lChoBmgJaA9DCMkfDDy3PHBAlIaUUpRoFU1LAWgWR0CSi2eOXE61dX2UKGgGaAloD0MIxawXQzlZcECUhpRSlGgVTXwBaBZHQJKLZ/axoqV1fZQoaAZoCWgPQwg/4IEBBJJvQJSGlFKUaBVNSAFoFkdAkox7KFIuoXV9lChoBmgJaA9DCLcqiezDV3BAlIaUUpRoFU0bAWgWR0CSjJRs/IKddX2UKGgGaAloD0MIoHB2axlqbUCUhpRSlGgVTSkBaBZHQJKN1fAsTWZ1fZQoaAZoCWgPQwgBGM+gob9vQJSGlFKUaBVNKgFoFkdAko7I/JNj9XV9lChoBmgJaA9DCJSgv9AjmHFAlIaUUpRoFU03AWgWR0CSkWS3b212dX2UKGgGaAloD0MIO/922a8zbkCUhpRSlGgVTUkBaBZHQJKSBKJ2t+11fZQoaAZoCWgPQwiVYkfjUI5ZQJSGlFKUaBVN6ANoFkdAkpJe6/ZdwHV9lChoBmgJaA9DCDNRhNQtbnBAlIaUUpRoFU1sAWgWR0CSkqrhBJI2dX2UKGgGaAloD0MImMPuO8bTcECUhpRSlGgVTckCaBZHQJKT34agmJF1fZQoaAZoCWgPQwhinpW04k9tQJSGlFKUaBVNRAFoFkdAkpQpKjBVMnV9lChoBmgJaA9DCP578NrlOHBAlIaUUpRoFU07AWgWR0CSlU9zfaYedX2UKGgGaAloD0MIElDhCNLAcECUhpRSlGgVTWABaBZHQJKVt3iaRZF1fZQoaAZoCWgPQwjSOqqaYBZyQJSGlFKUaBVNPAFoFkdAkpZbzTWoWHV9lChoBmgJaA9DCC0hH/RsmW5AlIaUUpRoFU0+AWgWR0CSlqHcUM5PdX2UKGgGaAloD0MIecpquh4hcUCUhpRSlGgVTSYBaBZHQJKXC6e5Fw11fZQoaAZoCWgPQwi6+NueYJJxQJSGlFKUaBVNbgFoFkdAkphNBWxQi3V9lChoBmgJaA9DCMnGgy12Z29AlIaUUpRoFU0vAWgWR0CSmLmhdt2tdX2UKGgGaAloD0MI1Lt4Py76cECUhpRSlGgVTXMBaBZHQJKZiRZEDyR1fZQoaAZoCWgPQwghWFUvvxlHQJSGlFKUaBVL4WgWR0CSmehIOH32dX2UKGgGaAloD0MITHDqA8mGbECUhpRSlGgVTTkCaBZHQJKwP8AJb+t1fZQoaAZoCWgPQwjRksfT8rpSQJSGlFKUaBVL1GgWR0CSsgHfdhy9dX2UKGgGaAloD0MIIenTKvo8ckCUhpRSlGgVTWQBaBZHQJKyic2BJ7N1fZQoaAZoCWgPQwi70FynUeZxQJSGlFKUaBVNHgFoFkdAkrK0XP7emHV9lChoBmgJaA9DCK5FC9B2knBAlIaUUpRoFU1gAWgWR0CSs5qfOD8MdX2UKGgGaAloD0MIsHPTZhzZbkCUhpRSlGgVTR8BaBZHQJK1AH2RJVd1fZQoaAZoCWgPQwjjVGthltFwQJSGlFKUaBVNdwFoFkdAkrUurMkhR3V9lChoBmgJaA9DCNsy4CwlXXFAlIaUUpRoFU1zAWgWR0CStiayKNyYdX2UKGgGaAloD0MIzcggd5EQckCUhpRSlGgVTSgBaBZHQJK2qDAaef91fZQoaAZoCWgPQwjH9IQlHnJvQJSGlFKUaBVNZQFoFkdAkrcOgL7XQXV9lChoBmgJaA9DCKg1zTsODHJAlIaUUpRoFU0qAWgWR0CSt/Gsmv4edX2UKGgGaAloD0MIfotOlprccECUhpRSlGgVTWMBaBZHQJK4OFM7EHd1fZQoaAZoCWgPQwiDo+TVOSRvQJSGlFKUaBVNKAFoFkdAkrhIVVPva3V9lChoBmgJaA9DCC6sG+/O7nBAlIaUUpRoFU0hAWgWR0CSuRw2VE/jdX2UKGgGaAloD0MIaCJsePp8bkCUhpRSlGgVTXcCaBZHQJK6CEug6EJ1fZQoaAZoCWgPQwhpccYwp4BwQJSGlFKUaBVNcQFoFkdAkrsSowVTJnV9lChoBmgJaA9DCBa/KaxUUAHAlIaUUpRoFU0QAWgWR0CSu7A6Mir1dX2UKGgGaAloD0MIX5uNlVjzcUCUhpRSlGgVTR0BaBZHQJK8XSRbKRx1fZQoaAZoCWgPQwj7PhwkRLJuQJSGlFKUaBVNeAFoFkdAkr4FfJFLFnV9lChoBmgJaA9DCMwLsI9OYG9AlIaUUpRoFU1DAWgWR0CSvlHck+otdX2UKGgGaAloD0MI8aDZde+BckCUhpRSlGgVTV0BaBZHQJK+nHKfWc11fZQoaAZoCWgPQwiRR3AjZXczwJSGlFKUaBVL/2gWR0CSvuOryUcGdX2UKGgGaAloD0MItrxyvS0ccECUhpRSlGgVTR0BaBZHQJK/APmPo3d1fZQoaAZoCWgPQwiLUkKwqnptQJSGlFKUaBVNXQFoFkdAkr/tJJ5E+nV9lChoBmgJaA9DCJgXYB8dnG5AlIaUUpRoFU0wAWgWR0CSwApuMuOCdX2UKGgGaAloD0MI+WabG9MFcECUhpRSlGgVTZoBaBZHQJLB5XA/LTx1fZQoaAZoCWgPQwgC1T+IZGFwQJSGlFKUaBVNRwFoFkdAksImrXDm83V9lChoBmgJaA9DCNm0UggkA3BAlIaUUpRoFU0wAWgWR0CSwmOYIBzWdX2UKGgGaAloD0MIc56xL1lpb0CUhpRSlGgVTVYBaBZHQJLCoFJQLux1fZQoaAZoCWgPQwihZ7Pq8z1wQJSGlFKUaBVNjAFoFkdAksPZAY51eXV9lChoBmgJaA9DCP94r1rZh3BAlIaUUpRoFU0fAWgWR0CSw9iPyTY/dX2UKGgGaAloD0MI46YGmk9hbUCUhpRSlGgVTVwBaBZHQJLEjcQAdXF1fZQoaAZoCWgPQwh5Iojz8FVrQJSGlFKUaBVNRAFoFkdAksWKAJ9iMHV9lChoBmgJaA9DCJjbvdznD3FAlIaUUpRoFU0oAWgWR0CSxuuOS4e+dX2UKGgGaAloD0MIUU8fgT9CbUCUhpRSlGgVTUYBaBZHQJLIPlGPPs11fZQoaAZoCWgPQwjYmxiSUxJxQJSGlFKUaBVNgwFoFkdAkshW9Htnf3V9lChoBmgJaA9DCGJnCp1XwG1AlIaUUpRoFU09AWgWR0CSyIYbKifydX2UKGgGaAloD0MI3/yGiUY+cUCUhpRSlGgVTVUBaBZHQJLI86Lfk3l1fZQoaAZoCWgPQwjrNT0oKARvQJSGlFKUaBVNOAFoFkdAksmHXI2fkHV9lChoBmgJaA9DCF0z+WbbAHJAlIaUUpRoFU1AAWgWR0CSya2UB4lhdX2UKGgGaAloD0MI2XxcGyqGO0CUhpRSlGgVS/9oFkdAksmtECvHLnV9lChoBmgJaA9DCFKeeTnsKHBAlIaUUpRoFU1gAWgWR0CSybdFOO81dX2UKGgGaAloD0MIj/zBwHMbcECUhpRSlGgVTV4BaBZHQJLMogNgBtF1fZQoaAZoCWgPQwiH26FhsZ1yQJSGlFKUaBVNTgFoFkdAksyrOeJ53XV9lChoBmgJaA9DCH+8V60MW3BAlIaUUpRoFU0zAWgWR0CSzTA5aNdadX2UKGgGaAloD0MInQ/PEmSEM0CUhpRSlGgVTSwBaBZHQJLNtXbM5fd1fZQoaAZoCWgPQwifBaG8j59wQJSGlFKUaBVNawFoFkdAks73AmAskXV9lChoBmgJaA9DCJ7r+3DQS3FAlIaUUpRoFU0gAWgWR0CSz+Fs54nndX2UKGgGaAloD0MIZyeDo2QXcUCUhpRSlGgVTVwBaBZHQJLQfMibDuV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f2be646dc05968f76f9caad49c8b00348f2a289b55b8ce0ce917a53b9f290c6a
3
- size 147413
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:884e5c813cb1755d1eaf65368f11a63f66205ffd3559987c264f604ae617544d
3
+ size 147392
ppo-LunarLander-v2/_stable_baselines3_version CHANGED
@@ -1 +1 @@
1
- 1.7.0
 
1
+ 1.8.0
ppo-LunarLander-v2/data CHANGED
@@ -4,60 +4,38 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb122078670>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb122078700>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb122078790>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb122078820>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7fb1220788b0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7fb122078940>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb1220789d0>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb122078a60>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7fb122078af0>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb122078b80>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb122078c10>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb122078ca0>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7fb12207a940>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
- "observation_space": {
25
- ":type:": "<class 'gym.spaces.box.Box'>",
26
- ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
- "dtype": "float32",
28
- "_shape": [
29
- 8
30
- ],
31
- "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
- "high": "[inf inf inf inf inf inf inf inf]",
33
- "bounded_below": "[False False False False False False False False]",
34
- "bounded_above": "[False False False False False False False False]",
35
- "_np_random": null
36
- },
37
- "action_space": {
38
- ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
- ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
- "n": 4,
41
- "_shape": [],
42
- "dtype": "int64",
43
- "_np_random": null
44
- },
45
- "n_envs": 16,
46
  "num_timesteps": 1015808,
47
  "_total_timesteps": 1000000,
48
  "_num_timesteps_at_start": 0,
49
  "seed": null,
50
  "action_noise": null,
51
- "start_time": 1680101378325501315,
52
  "learning_rate": 0.0003,
53
  "tensorboard_log": null,
54
  "lr_schedule": {
55
  ":type:": "<class 'function'>",
56
- ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
  },
58
  "_last_obs": {
59
  ":type:": "<class 'numpy.ndarray'>",
60
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJoGqjxqvsA/HlUTPoU9KD411BI9C/XaPQAAAAAAAAAAM0/5PJzDTD8Aoos92n7cvhZYqD2TuL87AAAAAAAAAADzQ8G9Pds5u+awJD4jhg2+QazMvOiEPr8AAIA/AACAPzOfCDwp2Fm66jcvs7GCe65EvmK5KKLTMwAAgD8AAIA/Te5Cvh4TGT+rJKw93/WrvjFelb0WDeS9AAAAAAAAAAAzxOA8FNiSugU6bLVGRGWw+YSZOlv5qzQAAIA/AACAP6DLeb5KUiq9VR17u15uFLqP6JQ+9azeOgAAgD8AAIA/wP+GPqNfFj+CKQm+nuvBvjMCgj6GznK+AAAAAAAAAADNPE+9zW67P5H0IL9VClE+7b5hPYSBwD0AAAAAAAAAAJofGj7Ppp4+sQXCvssJWb4wTre9OG3ovQAAAAAAAAAAzSo/PK75krpJcrE74mGoOOdooToyOma4AACAPwAAgD8afQy9ylofP2ta7T05RJe+6vWfvIWdhD0AAAAAAAAAALMkjr17vr26Xt5JO2/bpTeV3Yq5dtIVugAAgD8AAIA/ZmMRvas3tj4dLae9GzmGvl+LBL3Sqgq7AAAAAAAAAABN2mm9uAyyu+LrGTsFYo08ODQWvQoNcD0AAIA/AACAP2Ys2ryunam6YptyOIwGgjUdENC4ZjKMtwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
  },
62
  "_last_episode_starts": {
63
  ":type:": "<class 'numpy.ndarray'>",
@@ -68,15 +46,38 @@
68
  "use_sde": false,
69
  "sde_sample_freq": -1,
70
  "_current_progress_remaining": -0.015808000000000044,
 
71
  "ep_info_buffer": {
72
  ":type:": "<class 'collections.deque'>",
73
- ":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJLn8h7R1ckCUhpRSlIwBbJRNPQGMAXSUR0CUZ2vPTodNdX2UKGgGaAloD0MIO1J95xflcECUhpRSlGgVTR0BaBZHQJRpYM2FWXF1fZQoaAZoCWgPQwi22O2zCtpzQJSGlFKUaBVNBQFoFkdAlGmYuTRplHV9lChoBmgJaA9DCOrnTUUqiW1AlIaUUpRoFU0SAWgWR0CUabOu7pV0dX2UKGgGaAloD0MIcsRafEplcECUhpRSlGgVTT0BaBZHQJRpwR15jYt1fZQoaAZoCWgPQwifAIqRpVFyQJSGlFKUaBVNLQFoFkdAlGp6/Efkm3V9lChoBmgJaA9DCM5twr0yb3NAlIaUUpRoFU0cAWgWR0CUaxVN5+pgdX2UKGgGaAloD0MIA2A8gwZ1cECUhpRSlGgVTUgBaBZHQJRrTTjNpud1fZQoaAZoCWgPQwg0hc5rbM1uQJSGlFKUaBVNDgFoFkdAlGwMhTwUg3V9lChoBmgJaA9DCJpfzQGCI29AlIaUUpRoFU0EAWgWR0CUbFZLqUu+dX2UKGgGaAloD0MIAIxn0NAvckCUhpRSlGgVTUQBaBZHQJRtCL2pQ1t1fZQoaAZoCWgPQwiuRnalZRZwQJSGlFKUaBVNLgFoFkdAlG35EYwZfnV9lChoBmgJaA9DCNB/D157NXNAlIaUUpRoFU1FAWgWR0CUb3K6FuejdX2UKGgGaAloD0MI2liJeZaacECUhpRSlGgVTRsBaBZHQJRwsCA+Y+l1fZQoaAZoCWgPQwjwbmWJDgxwQJSGlFKUaBVL/WgWR0CUcbNy5qdpdX2UKGgGaAloD0MINxlVhvFXcECUhpRSlGgVTQYBaBZHQJRx0eo1k2B1fZQoaAZoCWgPQwhKB+v/HLFxQJSGlFKUaBVL7mgWR0CUcm+6iCardX2UKGgGaAloD0MIWfj6WhfncUCUhpRSlGgVTWMBaBZHQJRyzaZhKDl1fZQoaAZoCWgPQwjnbtdL05BxQJSGlFKUaBVNDgFoFkdAlHNKL0jC53V9lChoBmgJaA9DCOo9ldPejHBAlIaUUpRoFUvhaBZHQJRzoYaYNRZ1fZQoaAZoCWgPQwj3PH/aqMxxQJSGlFKUaBVNHwFoFkdAlHOpwXIlt3V9lChoBmgJaA9DCNBGrpsSwHFAlIaUUpRoFU0iAWgWR0CUc+/QjUutdX2UKGgGaAloD0MIZRu4AzWRcECUhpRSlGgVTRQBaBZHQJRz/8vVVgh1fZQoaAZoCWgPQwjHnj2X6UxxQJSGlFKUaBVNDAFoFkdAlHQc0pEx7HV9lChoBmgJaA9DCIdSexHtbm9AlIaUUpRoFU0hAWgWR0CUdKcmjTKDdX2UKGgGaAloD0MIOL9hosEQckCUhpRSlGgVTSEBaBZHQJR1V77bcoJ1fZQoaAZoCWgPQwjHYptUNJ5xQJSGlFKUaBVNBwFoFkdAlHW9IXj2jHV9lChoBmgJaA9DCMMq3sh8EnFAlIaUUpRoFU0lAWgWR0CUddbtqpLmdX2UKGgGaAloD0MIxAd2/JdNbUCUhpRSlGgVTSQBaBZHQJR3QfzSThZ1fZQoaAZoCWgPQwgeNpGZCw5FQJSGlFKUaBVL4mgWR0CUd1g6ltTDdX2UKGgGaAloD0MIvmn67EDeckCUhpRSlGgVTSgBaBZHQJR4M1wYLst1fZQoaAZoCWgPQwhd4sgDkdtyQJSGlFKUaBVL7GgWR0CUeROu7pV0dX2UKGgGaAloD0MIjln2JLAfcUCUhpRSlGgVTSgBaBZHQJR5TtjTa0x1fZQoaAZoCWgPQwhqoPmcu0dzQJSGlFKUaBVNFQFoFkdAlHqlJlJ6IHV9lChoBmgJaA9DCJZcxeJ3BHJAlIaUUpRoFU0LAWgWR0CUeq8jAzpHdX2UKGgGaAloD0MIYviImNK3cUCUhpRSlGgVTRYBaBZHQJR7EWykbgl1fZQoaAZoCWgPQwiZZyWtuIlxQJSGlFKUaBVNIgFoFkdAlHsPpt78enV9lChoBmgJaA9DCATj4NJx2HBAlIaUUpRoFU1XAWgWR0CUe1T72tdSdX2UKGgGaAloD0MILlkV4WbVckCUhpRSlGgVS+5oFkdAlHuIubqhUXV9lChoBmgJaA9DCM2U1t+SQXJAlIaUUpRoFU1SAWgWR0CUe4WHUMG5dX2UKGgGaAloD0MInnjOFlA6cUCUhpRSlGgVTSYBaBZHQJR8NkVeruJ1fZQoaAZoCWgPQwjRXKeRlrpuQJSGlFKUaBVNGwFoFkdAlH0SxiXpn3V9lChoBmgJaA9DCMAIGjNJgXBAlIaUUpRoFU1SAWgWR0CUfsXpW3jNdX2UKGgGaAloD0MIiSZQxGIlcUCUhpRSlGgVTRUBaBZHQJR+zuv2XcB1fZQoaAZoCWgPQwjCNAwf0eVxQJSGlFKUaBVNvQFoFkdAlJK+NxVAA3V9lChoBmgJaA9DCMDo8ubwDG9AlIaUUpRoFU0PAWgWR0CUk6DQZ4wAdX2UKGgGaAloD0MIxjU+kz2PckCUhpRSlGgVTTcBaBZHQJST4XAM2FZ1fZQoaAZoCWgPQwgzUu+pnDxvQJSGlFKUaBVNYwFoFkdAlJQe+M6zV3V9lChoBmgJaA9DCGoy420l3XBAlIaUUpRoFUv0aBZHQJSVRNmDlHV1fZQoaAZoCWgPQwhN845T9ItsQJSGlFKUaBVNHQFoFkdAlJWQpWmxdXV9lChoBmgJaA9DCNEF9S1zDW1AlIaUUpRoFU0HAWgWR0CUlaL0Bfa6dX2UKGgGaAloD0MI+kUJ+ov7bkCUhpRSlGgVTSEBaBZHQJSVtxXGOuJ1fZQoaAZoCWgPQwgx68VQjl5zQJSGlFKUaBVNVQFoFkdAlJXe/gzguXV9lChoBmgJaA9DCJRrCmS2unBAlIaUUpRoFU0iAWgWR0CUlg30PH1fdX2UKGgGaAloD0MIqi11kBc6cUCUhpRSlGgVTSkBaBZHQJSWO5uqFRJ1fZQoaAZoCWgPQwi4VnvYy+5wQJSGlFKUaBVNGAFoFkdAlJZCfg75mHV9lChoBmgJaA9DCPkUAOMZVFJAlIaUUpRoFUvDaBZHQJSXC48U21l1fZQoaAZoCWgPQwhmh/iHLfxsQJSGlFKUaBVNOgFoFkdAlJersF+uvHV9lChoBmgJaA9DCAg8MIDw7TlAlIaUUpRoFUvTaBZHQJSYWrELpiZ1fZQoaAZoCWgPQwhEUDV6NVVuQJSGlFKUaBVNBQFoFkdAlJj5/0/W2HV9lChoBmgJaA9DCB9q2zAK7m5AlIaUUpRoFU1XAWgWR0CUmdItlI3BdX2UKGgGaAloD0MISMX/HZGAckCUhpRSlGgVS/BoFkdAlJteE/Spi3V9lChoBmgJaA9DCF/Tg4JSO3BAlIaUUpRoFU0DAWgWR0CUm8zEaVD8dX2UKGgGaAloD0MIL6NYbmmPbUCUhpRSlGgVTQwBaBZHQJSbzilzltF1fZQoaAZoCWgPQwivBigNNW5vQJSGlFKUaBVNAwFoFkdAlJ5gxWT5f3V9lChoBmgJaA9DCJLM6h2ux3FAlIaUUpRoFU0IAWgWR0CUn1axHG0edX2UKGgGaAloD0MIa5p3nCIhcUCUhpRSlGgVTRwBaBZHQJSfe4G2TgV1fZQoaAZoCWgPQwjFjzF3LVdyQJSGlFKUaBVNIQFoFkdAlJ+akhzNlnV9lChoBmgJaA9DCL0A++hUMXBAlIaUUpRoFU0OAWgWR0CUn+YVqN6xdX2UKGgGaAloD0MIsHJokW03c0CUhpRSlGgVTSUBaBZHQJSgPftQbdd1fZQoaAZoCWgPQwibj2tDRetuQJSGlFKUaBVNQAFoFkdAlKB/wEyLynV9lChoBmgJaA9DCOWAXU0eaW5AlIaUUpRoFU1DAWgWR0CUof1xbSqmdX2UKGgGaAloD0MIX7THC6kvcECUhpRSlGgVTSIBaBZHQJSiMQYk3S91fZQoaAZoCWgPQwjaOGItPs5xQJSGlFKUaBVL9mgWR0CUov5hScbzdX2UKGgGaAloD0MIdvpBXaSEckCUhpRSlGgVTSABaBZHQJSjGrksBhh1fZQoaAZoCWgPQwjTMlLvaXhwQJSGlFKUaBVNEAFoFkdAlKNSRKYiPnV9lChoBmgJaA9DCHlzuFb7SHFAlIaUUpRoFU0YAWgWR0CUpP0bLlmwdX2UKGgGaAloD0MI7URJSKSVcUCUhpRSlGgVTRIBaBZHQJSmqZof0Vd1fZQoaAZoCWgPQwjrHAOy18FvQJSGlFKUaBVL92gWR0CUqWjH4oJBdX2UKGgGaAloD0MIiZl9HmO5cECUhpRSlGgVTQ8BaBZHQJSqrd+G47R1fZQoaAZoCWgPQwgeqFMe3T1xQJSGlFKUaBVNKwFoFkdAlKsrM9r433V9lChoBmgJaA9DCE0s8BUdenFAlIaUUpRoFU0ZAWgWR0CUq+OUdJardX2UKGgGaAloD0MIL4hITbuEb0CUhpRSlGgVTSsBaBZHQJSsREpiI+J1fZQoaAZoCWgPQwgnwoan11ZuQJSGlFKUaBVNDQFoFkdAlK1UcXFcZHV9lChoBmgJaA9DCLlSz4JQpHBAlIaUUpRoFU24AWgWR0CUrh1uR9w4dX2UKGgGaAloD0MIm3EaogpgcECUhpRSlGgVTSYBaBZHQJSuYRoRIz51fZQoaAZoCWgPQwj3cwry89pwQJSGlFKUaBVNWgFoFkdAlK5tdJJ5FHV9lChoBmgJaA9DCArXo3A95nFAlIaUUpRoFU1VAWgWR0CUrntp22XtdX2UKGgGaAloD0MIOIQqNXvHcUCUhpRSlGgVTRgBaBZHQJSuz/EOy3V1fZQoaAZoCWgPQwit+IbCZ0huQJSGlFKUaBVNJAFoFkdAlK7oQvpQlHV9lChoBmgJaA9DCECGjh2UBnFAlIaUUpRoFU01AWgWR0CUr1h8YyfudX2UKGgGaAloD0MISbw8nauOckCUhpRSlGgVTTMBaBZHQJSwn1Iy0rt1fZQoaAZoCWgPQwjfGtgqwYBAQJSGlFKUaBVL3WgWR0CUsp/kNnXedX2UKGgGaAloD0MIc9cS8oH5cUCUhpRSlGgVTVABaBZHQJSysURFqi51fZQoaAZoCWgPQwhBg02dB+FwQJSGlFKUaBVNJQFoFkdAlLMjefqX4XV9lChoBmgJaA9DCFbzHJEvZnBAlIaUUpRoFU0fAWgWR0CUs5Jhvze5dX2UKGgGaAloD0MIibFMv4Q7cUCUhpRSlGgVTSABaBZHQJSz5jgAIY51fZQoaAZoCWgPQwjzy2CMyMxsQJSGlFKUaBVNIAFoFkdAlLRQ+QlrunV9lChoBmgJaA9DCIbKv5ZX6HBAlIaUUpRoFU0iAWgWR0CUtbpOvdM1dX2UKGgGaAloD0MICaaaWYv5ckCUhpRSlGgVTREBaBZHQJS14qZtvXN1ZS4="
74
  },
75
  "ep_success_buffer": {
76
  ":type:": "<class 'collections.deque'>",
77
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
  },
79
  "_n_updates": 248,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80
  "n_steps": 1024,
81
  "gamma": 0.999,
82
  "gae_lambda": 0.98,
@@ -87,7 +88,7 @@
87
  "n_epochs": 4,
88
  "clip_range": {
89
  ":type:": "<class 'function'>",
90
- ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
  },
92
  "clip_range_vf": null,
93
  "normalize_advantage": true,
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdc85498820>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdc854988b0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdc85498940>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdc854989d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fdc85498a60>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fdc85498af0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fdc85498b80>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdc85498c10>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fdc85498ca0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdc85498d30>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdc85498dc0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdc85498e50>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fdc8548bf00>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  "num_timesteps": 1015808,
25
  "_total_timesteps": 1000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1682798765866691588,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "lr_schedule": {
33
  ":type:": "<class 'function'>",
34
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
35
  },
36
  "_last_obs": {
37
  ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEbcO77IPIW8viewupI/2LgaYeM9AvbdOQAAgD8AAIA/Wo+0vZ+moLvHLoE8DaqFPH986TylW2S9AACAPwAAgD+9uIO+SGiQP6sG8b2dsZq+nKBFvtinsT0AAAAAAAAAADOIAb34vao9dcl4PC8MJr4KeLk8DXyUPAAAAAAAAAAA5hh6vU7AgT0V1QC+S37pvfVdo72hhpy9AAAAAAAAAADmpeu9CvYRu7/TCD7FQQC+YhCmvXb/kr4AAIA/AAAAAGZmy7iuo5q6euAnOpNu9rgmBAC72FU0uQAAgD8AAIA/wM3QvbzrLT7oDRU9Z9Fqvr7kET023Os8AAAAAAAAAAAAiSM9AZiuvNuQtb0j1qy7xUMHuzjFVz0AAIA/AACAP2bVkLx4xLw8t5OmvTEqLr6b3Am9fd4+vQAAAAAAAAAA2g3nPb6mqT+aivw+y5Civsc6AD4CRW0+AAAAAAAAAAAI6Ky+A3tZP1rTWz4yi3a+T5FuvfsPWD0AAAAAAAAAAHqWmj6f0gQ/YhXmvb+VlL5C5Lc9gUyBvQAAAAAAAAAAAHKvPjAfwj5Ol3y+kGkhvn1PkT1LkZu8AAAAAAAAAACz7nM+8eexPxgvFz9r2qO+sB+RPkQhMz4AAAAAAAAAAND7f74vukI/dqXlPfwFiL73FB69pixRPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
39
  },
40
  "_last_episode_starts": {
41
  ":type:": "<class 'numpy.ndarray'>",
 
46
  "use_sde": false,
47
  "sde_sample_freq": -1,
48
  "_current_progress_remaining": -0.015808000000000044,
49
+ "_stats_window_size": 100,
50
  "ep_info_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMXpuoStAbECUhpRSlIwBbJRNRAGMAXSUR0CSXEzZpSJkdX2UKGgGaAloD0MI7fDXZI3bbECUhpRSlGgVTVUBaBZHQJJc0+3Ytg91fZQoaAZoCWgPQwjw/KIEPZFxQJSGlFKUaBVNPAFoFkdAkl6cUuctoXV9lChoBmgJaA9DCGCvsOD+bG5AlIaUUpRoFU2UAWgWR0CSXrreZXuFdX2UKGgGaAloD0MInL8JhUgxckCUhpRSlGgVTT8BaBZHQJJfkv0yxiZ1fZQoaAZoCWgPQwgI6SlyiFNwQJSGlFKUaBVNhAFoFkdAknRkM9bHInV9lChoBmgJaA9DCKmj42pkvm5AlIaUUpRoFU0lAWgWR0CSd0aDwpfAdX2UKGgGaAloD0MIt9WsMz7rckCUhpRSlGgVTVgBaBZHQJJ4CqGUOd51fZQoaAZoCWgPQwiVKlH2lnxOQJSGlFKUaBVNEwFoFkdAknjTIaLn93V9lChoBmgJaA9DCHoYWp1cY3BAlIaUUpRoFU0oAWgWR0CSeNY4hllLdX2UKGgGaAloD0MIwr0yb1X8bkCUhpRSlGgVTY4BaBZHQJJ566tknTl1fZQoaAZoCWgPQwjNeFvptUZsQJSGlFKUaBVNWwFoFkdAknot+9allHV9lChoBmgJaA9DCHcwYp+ACXFAlIaUUpRoFU1HAWgWR0CSei/Zdv87dX2UKGgGaAloD0MIbXL4pBPFbUCUhpRSlGgVTTABaBZHQJJ78b0e2eB1fZQoaAZoCWgPQwgVqpuLf+1wQJSGlFKUaBVNSAFoFkdAknwekcjqwHV9lChoBmgJaA9DCJJYUu6+mGtAlIaUUpRoFU1oAWgWR0CSfPRVZLZjdX2UKGgGaAloD0MI71nXaPkXcECUhpRSlGgVTXoBaBZHQJJ9W8VYZEV1fZQoaAZoCWgPQwhFEOfhhIdvQJSGlFKUaBVNPAFoFkdAkn5/WUbDM3V9lChoBmgJaA9DCAMF3slnY3BAlIaUUpRoFU1kAWgWR0CSf7gIQe3hdX2UKGgGaAloD0MI4UbKFskLcECUhpRSlGgVTTABaBZHQJKBXfMwDeV1fZQoaAZoCWgPQwgPDYtRlzpyQJSGlFKUaBVNigFoFkdAkoJbehwl0HV9lChoBmgJaA9DCNqM0xBVa29AlIaUUpRoFU0mAWgWR0CSg3Pi1iOOdX2UKGgGaAloD0MIe7374736a0CUhpRSlGgVTVcBaBZHQJKE6RcNYr91fZQoaAZoCWgPQwhr09heC9RwQJSGlFKUaBVNNgFoFkdAkoWpYxL0z3V9lChoBmgJaA9DCNv7VBVaDHFAlIaUUpRoFU1RAWgWR0CShcovzvqkdX2UKGgGaAloD0MIr1+wGzaDa0CUhpRSlGgVTUwBaBZHQJKILPdEb5x1fZQoaAZoCWgPQwj7eOi7W7dxQJSGlFKUaBVNdQFoFkdAkohO+23KCHV9lChoBmgJaA9DCG7eOClMqmlAlIaUUpRoFU2JAWgWR0CSiPYQ8OkMdX2UKGgGaAloD0MITl/P12wOcECUhpRSlGgVTXMBaBZHQJKKBAiV0Ld1fZQoaAZoCWgPQwjjGTT0D9dxQJSGlFKUaBVNaQFoFkdAkosqzeGfw3V9lChoBmgJaA9DCMkfDDy3PHBAlIaUUpRoFU1LAWgWR0CSi2eOXE61dX2UKGgGaAloD0MIxawXQzlZcECUhpRSlGgVTXwBaBZHQJKLZ/axoqV1fZQoaAZoCWgPQwg/4IEBBJJvQJSGlFKUaBVNSAFoFkdAkox7KFIuoXV9lChoBmgJaA9DCLcqiezDV3BAlIaUUpRoFU0bAWgWR0CSjJRs/IKddX2UKGgGaAloD0MIoHB2axlqbUCUhpRSlGgVTSkBaBZHQJKN1fAsTWZ1fZQoaAZoCWgPQwgBGM+gob9vQJSGlFKUaBVNKgFoFkdAko7I/JNj9XV9lChoBmgJaA9DCJSgv9AjmHFAlIaUUpRoFU03AWgWR0CSkWS3b212dX2UKGgGaAloD0MIO/922a8zbkCUhpRSlGgVTUkBaBZHQJKSBKJ2t+11fZQoaAZoCWgPQwiVYkfjUI5ZQJSGlFKUaBVN6ANoFkdAkpJe6/ZdwHV9lChoBmgJaA9DCDNRhNQtbnBAlIaUUpRoFU1sAWgWR0CSkqrhBJI2dX2UKGgGaAloD0MImMPuO8bTcECUhpRSlGgVTckCaBZHQJKT34agmJF1fZQoaAZoCWgPQwhinpW04k9tQJSGlFKUaBVNRAFoFkdAkpQpKjBVMnV9lChoBmgJaA9DCP578NrlOHBAlIaUUpRoFU07AWgWR0CSlU9zfaYedX2UKGgGaAloD0MIElDhCNLAcECUhpRSlGgVTWABaBZHQJKVt3iaRZF1fZQoaAZoCWgPQwjSOqqaYBZyQJSGlFKUaBVNPAFoFkdAkpZbzTWoWHV9lChoBmgJaA9DCC0hH/RsmW5AlIaUUpRoFU0+AWgWR0CSlqHcUM5PdX2UKGgGaAloD0MIecpquh4hcUCUhpRSlGgVTSYBaBZHQJKXC6e5Fw11fZQoaAZoCWgPQwi6+NueYJJxQJSGlFKUaBVNbgFoFkdAkphNBWxQi3V9lChoBmgJaA9DCMnGgy12Z29AlIaUUpRoFU0vAWgWR0CSmLmhdt2tdX2UKGgGaAloD0MI1Lt4Py76cECUhpRSlGgVTXMBaBZHQJKZiRZEDyR1fZQoaAZoCWgPQwghWFUvvxlHQJSGlFKUaBVL4WgWR0CSmehIOH32dX2UKGgGaAloD0MITHDqA8mGbECUhpRSlGgVTTkCaBZHQJKwP8AJb+t1fZQoaAZoCWgPQwjRksfT8rpSQJSGlFKUaBVL1GgWR0CSsgHfdhy9dX2UKGgGaAloD0MIIenTKvo8ckCUhpRSlGgVTWQBaBZHQJKyic2BJ7N1fZQoaAZoCWgPQwi70FynUeZxQJSGlFKUaBVNHgFoFkdAkrK0XP7emHV9lChoBmgJaA9DCK5FC9B2knBAlIaUUpRoFU1gAWgWR0CSs5qfOD8MdX2UKGgGaAloD0MIsHPTZhzZbkCUhpRSlGgVTR8BaBZHQJK1AH2RJVd1fZQoaAZoCWgPQwjjVGthltFwQJSGlFKUaBVNdwFoFkdAkrUurMkhR3V9lChoBmgJaA9DCNsy4CwlXXFAlIaUUpRoFU1zAWgWR0CStiayKNyYdX2UKGgGaAloD0MIzcggd5EQckCUhpRSlGgVTSgBaBZHQJK2qDAaef91fZQoaAZoCWgPQwjH9IQlHnJvQJSGlFKUaBVNZQFoFkdAkrcOgL7XQXV9lChoBmgJaA9DCKg1zTsODHJAlIaUUpRoFU0qAWgWR0CSt/Gsmv4edX2UKGgGaAloD0MIfotOlprccECUhpRSlGgVTWMBaBZHQJK4OFM7EHd1fZQoaAZoCWgPQwiDo+TVOSRvQJSGlFKUaBVNKAFoFkdAkrhIVVPva3V9lChoBmgJaA9DCC6sG+/O7nBAlIaUUpRoFU0hAWgWR0CSuRw2VE/jdX2UKGgGaAloD0MIaCJsePp8bkCUhpRSlGgVTXcCaBZHQJK6CEug6EJ1fZQoaAZoCWgPQwhpccYwp4BwQJSGlFKUaBVNcQFoFkdAkrsSowVTJnV9lChoBmgJaA9DCBa/KaxUUAHAlIaUUpRoFU0QAWgWR0CSu7A6Mir1dX2UKGgGaAloD0MIX5uNlVjzcUCUhpRSlGgVTR0BaBZHQJK8XSRbKRx1fZQoaAZoCWgPQwj7PhwkRLJuQJSGlFKUaBVNeAFoFkdAkr4FfJFLFnV9lChoBmgJaA9DCMwLsI9OYG9AlIaUUpRoFU1DAWgWR0CSvlHck+otdX2UKGgGaAloD0MI8aDZde+BckCUhpRSlGgVTV0BaBZHQJK+nHKfWc11fZQoaAZoCWgPQwiRR3AjZXczwJSGlFKUaBVL/2gWR0CSvuOryUcGdX2UKGgGaAloD0MItrxyvS0ccECUhpRSlGgVTR0BaBZHQJK/APmPo3d1fZQoaAZoCWgPQwiLUkKwqnptQJSGlFKUaBVNXQFoFkdAkr/tJJ5E+nV9lChoBmgJaA9DCJgXYB8dnG5AlIaUUpRoFU0wAWgWR0CSwApuMuOCdX2UKGgGaAloD0MI+WabG9MFcECUhpRSlGgVTZoBaBZHQJLB5XA/LTx1fZQoaAZoCWgPQwgC1T+IZGFwQJSGlFKUaBVNRwFoFkdAksImrXDm83V9lChoBmgJaA9DCNm0UggkA3BAlIaUUpRoFU0wAWgWR0CSwmOYIBzWdX2UKGgGaAloD0MIc56xL1lpb0CUhpRSlGgVTVYBaBZHQJLCoFJQLux1fZQoaAZoCWgPQwihZ7Pq8z1wQJSGlFKUaBVNjAFoFkdAksPZAY51eXV9lChoBmgJaA9DCP94r1rZh3BAlIaUUpRoFU0fAWgWR0CSw9iPyTY/dX2UKGgGaAloD0MI46YGmk9hbUCUhpRSlGgVTVwBaBZHQJLEjcQAdXF1fZQoaAZoCWgPQwh5Iojz8FVrQJSGlFKUaBVNRAFoFkdAksWKAJ9iMHV9lChoBmgJaA9DCJjbvdznD3FAlIaUUpRoFU0oAWgWR0CSxuuOS4e+dX2UKGgGaAloD0MIUU8fgT9CbUCUhpRSlGgVTUYBaBZHQJLIPlGPPs11fZQoaAZoCWgPQwjYmxiSUxJxQJSGlFKUaBVNgwFoFkdAkshW9Htnf3V9lChoBmgJaA9DCGJnCp1XwG1AlIaUUpRoFU09AWgWR0CSyIYbKifydX2UKGgGaAloD0MI3/yGiUY+cUCUhpRSlGgVTVUBaBZHQJLI86Lfk3l1fZQoaAZoCWgPQwjrNT0oKARvQJSGlFKUaBVNOAFoFkdAksmHXI2fkHV9lChoBmgJaA9DCF0z+WbbAHJAlIaUUpRoFU1AAWgWR0CSya2UB4lhdX2UKGgGaAloD0MI2XxcGyqGO0CUhpRSlGgVS/9oFkdAksmtECvHLnV9lChoBmgJaA9DCFKeeTnsKHBAlIaUUpRoFU1gAWgWR0CSybdFOO81dX2UKGgGaAloD0MIj/zBwHMbcECUhpRSlGgVTV4BaBZHQJLMogNgBtF1fZQoaAZoCWgPQwiH26FhsZ1yQJSGlFKUaBVNTgFoFkdAksyrOeJ53XV9lChoBmgJaA9DCH+8V60MW3BAlIaUUpRoFU0zAWgWR0CSzTA5aNdadX2UKGgGaAloD0MInQ/PEmSEM0CUhpRSlGgVTSwBaBZHQJLNtXbM5fd1fZQoaAZoCWgPQwifBaG8j59wQJSGlFKUaBVNawFoFkdAks73AmAskXV9lChoBmgJaA9DCJ7r+3DQS3FAlIaUUpRoFU0gAWgWR0CSz+Fs54nndX2UKGgGaAloD0MIZyeDo2QXcUCUhpRSlGgVTVwBaBZHQJLQfMibDuV1ZS4="
53
  },
54
  "ep_success_buffer": {
55
  ":type:": "<class 'collections.deque'>",
56
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
57
  },
58
  "_n_updates": 248,
59
+ "observation_space": {
60
+ ":type:": "<class 'gym.spaces.box.Box'>",
61
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
62
+ "dtype": "float32",
63
+ "_shape": [
64
+ 8
65
+ ],
66
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
67
+ "high": "[inf inf inf inf inf inf inf inf]",
68
+ "bounded_below": "[False False False False False False False False]",
69
+ "bounded_above": "[False False False False False False False False]",
70
+ "_np_random": null
71
+ },
72
+ "action_space": {
73
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
74
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
75
+ "n": 4,
76
+ "_shape": [],
77
+ "dtype": "int64",
78
+ "_np_random": null
79
+ },
80
+ "n_envs": 16,
81
  "n_steps": 1024,
82
  "gamma": 0.999,
83
  "gae_lambda": 0.98,
 
88
  "n_epochs": 4,
89
  "clip_range": {
90
  ":type:": "<class 'function'>",
91
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
92
  },
93
  "clip_range_vf": null,
94
  "normalize_advantage": true,
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:925515f77dc7d4b1b1a8ee36fa4c1358feaca1f69edfa6d5fa36f206e6cca85a
3
  size 87929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6e8d5f92bb004cc0a5decc847f0abc7866f6a5d0f0489dc6b38be864af1ba80
3
  size 87929
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e7adee817daf24d509f468a1182ed5dae22e4a2b545b0d66449269e6d15e6b0f
3
- size 43393
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2e5c0fab211f39bc4d4734702c601842f447d41681fae37280e41910f7c2517
3
+ size 43329
ppo-LunarLander-v2/system_info.txt CHANGED
@@ -1,7 +1,7 @@
1
  - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
- - Python: 3.9.16
3
- - Stable-Baselines3: 1.7.0
4
- - PyTorch: 1.13.1+cu116
5
  - GPU Enabled: True
6
  - Numpy: 1.22.4
7
  - Gym: 0.21.0
 
1
  - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu118
5
  - GPU Enabled: True
6
  - Numpy: 1.22.4
7
  - Gym: 0.21.0
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"env_id": "LunarLander-v2", "mean_reward": -163.90780052634892, "std_reward": 103.27126014411449, "n_evaluation_episodes": 10, "eval_datetime": "2023-04-29T19:17:14.556331"}
 
1
+ {"mean_reward": 237.78700737064952, "std_reward": 20.899511839438095, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-29T20:28:02.088922"}