emaadshehzad
commited on
Add SetFit model
Browse files- 1_Pooling/config.json +4 -2
- README.md +100 -18
- config.json +14 -12
- config_setfit.json +4 -0
- model.safetensors +2 -2
- model_head.pkl +2 -2
- sentence_bert_config.json +1 -1
- special_tokens_map.json +5 -49
- tokenizer.json +0 -0
- tokenizer_config.json +17 -25
- vocab.txt +0 -5
1_Pooling/config.json
CHANGED
@@ -1,7 +1,9 @@
|
|
1 |
{
|
2 |
-
"word_embedding_dimension":
|
3 |
"pooling_mode_cls_token": false,
|
4 |
"pooling_mode_mean_tokens": true,
|
5 |
"pooling_mode_max_tokens": false,
|
6 |
-
"pooling_mode_mean_sqrt_len_tokens": false
|
|
|
|
|
7 |
}
|
|
|
1 |
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
"pooling_mode_cls_token": false,
|
4 |
"pooling_mode_mean_tokens": true,
|
5 |
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false
|
9 |
}
|
README.md
CHANGED
@@ -1,49 +1,131 @@
|
|
1 |
---
|
2 |
-
|
3 |
tags:
|
4 |
- setfit
|
5 |
- sentence-transformers
|
6 |
- text-classification
|
|
|
|
|
|
|
|
|
7 |
pipeline_tag: text-classification
|
|
|
|
|
8 |
---
|
9 |
|
10 |
-
#
|
11 |
|
12 |
-
This is a [SetFit
|
|
|
|
|
13 |
|
14 |
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
15 |
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
16 |
|
17 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
|
20 |
|
21 |
```bash
|
22 |
-
|
23 |
```
|
24 |
|
25 |
-
|
26 |
|
27 |
```python
|
28 |
from setfit import SetFitModel
|
29 |
|
30 |
-
# Download from
|
31 |
model = SetFitModel.from_pretrained("emaadshehzad/setfit-DK-V1")
|
32 |
# Run inference
|
33 |
-
preds = model(
|
34 |
```
|
35 |
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
```bibtex
|
39 |
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
40 |
-
doi = {10.48550/ARXIV.2209.11055},
|
41 |
-
url = {https://arxiv.org/abs/2209.11055},
|
42 |
-
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
43 |
-
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
44 |
-
title = {Efficient Few-Shot Learning Without Prompts},
|
45 |
-
publisher = {arXiv},
|
46 |
-
year = {2022},
|
47 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
48 |
}
|
49 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
library_name: setfit
|
3 |
tags:
|
4 |
- setfit
|
5 |
- sentence-transformers
|
6 |
- text-classification
|
7 |
+
- generated_from_setfit_trainer
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
widget: []
|
11 |
pipeline_tag: text-classification
|
12 |
+
inference: true
|
13 |
+
base_model: sentence-transformers/all-MiniLM-L12-v1
|
14 |
---
|
15 |
|
16 |
+
# SetFit with sentence-transformers/all-MiniLM-L12-v1
|
17 |
|
18 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-MiniLM-L12-v1](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v1) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
19 |
+
|
20 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
21 |
|
22 |
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
23 |
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
24 |
|
25 |
+
## Model Details
|
26 |
+
|
27 |
+
### Model Description
|
28 |
+
- **Model Type:** SetFit
|
29 |
+
- **Sentence Transformer body:** [sentence-transformers/all-MiniLM-L12-v1](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v1)
|
30 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
31 |
+
- **Maximum Sequence Length:** 256 tokens
|
32 |
+
<!-- - **Number of Classes:** Unknown -->
|
33 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
34 |
+
<!-- - **Language:** Unknown -->
|
35 |
+
<!-- - **License:** Unknown -->
|
36 |
+
|
37 |
+
### Model Sources
|
38 |
+
|
39 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
40 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
41 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
42 |
+
|
43 |
+
## Uses
|
44 |
+
|
45 |
+
### Direct Use for Inference
|
46 |
|
47 |
+
First install the SetFit library:
|
48 |
|
49 |
```bash
|
50 |
+
pip install setfit
|
51 |
```
|
52 |
|
53 |
+
Then you can load this model and run inference.
|
54 |
|
55 |
```python
|
56 |
from setfit import SetFitModel
|
57 |
|
58 |
+
# Download from the 🤗 Hub
|
59 |
model = SetFitModel.from_pretrained("emaadshehzad/setfit-DK-V1")
|
60 |
# Run inference
|
61 |
+
preds = model("I loved the spiderman movie!")
|
62 |
```
|
63 |
|
64 |
+
<!--
|
65 |
+
### Downstream Use
|
66 |
+
|
67 |
+
*List how someone could finetune this model on their own dataset.*
|
68 |
+
-->
|
69 |
+
|
70 |
+
<!--
|
71 |
+
### Out-of-Scope Use
|
72 |
+
|
73 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
74 |
+
-->
|
75 |
+
|
76 |
+
<!--
|
77 |
+
## Bias, Risks and Limitations
|
78 |
+
|
79 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
80 |
+
-->
|
81 |
|
82 |
+
<!--
|
83 |
+
### Recommendations
|
84 |
+
|
85 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
86 |
+
-->
|
87 |
+
|
88 |
+
## Training Details
|
89 |
+
|
90 |
+
### Framework Versions
|
91 |
+
- Python: 3.10.12
|
92 |
+
- SetFit: 1.0.3
|
93 |
+
- Sentence Transformers: 2.3.1
|
94 |
+
- Transformers: 4.35.2
|
95 |
+
- PyTorch: 2.1.0+cu121
|
96 |
+
- Datasets: 2.16.1
|
97 |
+
- Tokenizers: 0.15.1
|
98 |
+
|
99 |
+
## Citation
|
100 |
+
|
101 |
+
### BibTeX
|
102 |
```bibtex
|
103 |
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
104 |
+
doi = {10.48550/ARXIV.2209.11055},
|
105 |
+
url = {https://arxiv.org/abs/2209.11055},
|
106 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
107 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
108 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
109 |
+
publisher = {arXiv},
|
110 |
+
year = {2022},
|
111 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
112 |
}
|
113 |
```
|
114 |
+
|
115 |
+
<!--
|
116 |
+
## Glossary
|
117 |
+
|
118 |
+
*Clearly define terms in order to be accessible across audiences.*
|
119 |
+
-->
|
120 |
+
|
121 |
+
<!--
|
122 |
+
## Model Card Authors
|
123 |
+
|
124 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
125 |
+
-->
|
126 |
+
|
127 |
+
<!--
|
128 |
+
## Model Card Contact
|
129 |
+
|
130 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
131 |
+
-->
|
config.json
CHANGED
@@ -1,24 +1,26 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"architectures": [
|
4 |
-
"
|
5 |
],
|
6 |
"attention_probs_dropout_prob": 0.1,
|
7 |
-
"
|
8 |
-
"
|
9 |
"hidden_act": "gelu",
|
10 |
"hidden_dropout_prob": 0.1,
|
11 |
-
"hidden_size":
|
12 |
"initializer_range": 0.02,
|
13 |
-
"intermediate_size":
|
14 |
-
"layer_norm_eps": 1e-
|
15 |
-
"max_position_embeddings":
|
16 |
-
"model_type": "
|
17 |
"num_attention_heads": 12,
|
18 |
"num_hidden_layers": 12,
|
19 |
-
"pad_token_id":
|
20 |
-
"
|
21 |
"torch_dtype": "float32",
|
22 |
"transformers_version": "4.35.2",
|
23 |
-
"
|
|
|
|
|
24 |
}
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "sentence-transformers/all-MiniLM-L12-v1",
|
3 |
"architectures": [
|
4 |
+
"BertModel"
|
5 |
],
|
6 |
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
"hidden_act": "gelu",
|
10 |
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 384,
|
12 |
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 1536,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
"num_attention_heads": 12,
|
18 |
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
"torch_dtype": "float32",
|
22 |
"transformers_version": "4.35.2",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 30522
|
26 |
}
|
config_setfit.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"normalize_embeddings": false,
|
3 |
+
"labels": null
|
4 |
+
}
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a401594dc69a998b9b9cbb94a7a1e9e92873b8fa57c4cb0fbf3cb6497992a573
|
3 |
+
size 133462128
|
model_head.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:04aba599b084c7bae433b8d655507feecb3e3fd9ad67b7082120ac2316a38a0a
|
3 |
+
size 272935
|
sentence_bert_config.json
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
{
|
2 |
-
"max_seq_length":
|
3 |
"do_lower_case": false
|
4 |
}
|
|
|
1 |
{
|
2 |
+
"max_seq_length": 256,
|
3 |
"do_lower_case": false
|
4 |
}
|
special_tokens_map.json
CHANGED
@@ -1,51 +1,7 @@
|
|
1 |
{
|
2 |
-
"
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
"single_word": false
|
8 |
-
},
|
9 |
-
"cls_token": {
|
10 |
-
"content": "<s>",
|
11 |
-
"lstrip": false,
|
12 |
-
"normalized": true,
|
13 |
-
"rstrip": false,
|
14 |
-
"single_word": false
|
15 |
-
},
|
16 |
-
"eos_token": {
|
17 |
-
"content": "</s>",
|
18 |
-
"lstrip": false,
|
19 |
-
"normalized": false,
|
20 |
-
"rstrip": false,
|
21 |
-
"single_word": false
|
22 |
-
},
|
23 |
-
"mask_token": {
|
24 |
-
"content": "<mask>",
|
25 |
-
"lstrip": true,
|
26 |
-
"normalized": false,
|
27 |
-
"rstrip": false,
|
28 |
-
"single_word": false
|
29 |
-
},
|
30 |
-
"pad_token": {
|
31 |
-
"content": "<pad>",
|
32 |
-
"lstrip": false,
|
33 |
-
"normalized": false,
|
34 |
-
"rstrip": false,
|
35 |
-
"single_word": false
|
36 |
-
},
|
37 |
-
"sep_token": {
|
38 |
-
"content": "</s>",
|
39 |
-
"lstrip": false,
|
40 |
-
"normalized": true,
|
41 |
-
"rstrip": false,
|
42 |
-
"single_word": false
|
43 |
-
},
|
44 |
-
"unk_token": {
|
45 |
-
"content": "[UNK]",
|
46 |
-
"lstrip": false,
|
47 |
-
"normalized": false,
|
48 |
-
"rstrip": false,
|
49 |
-
"single_word": false
|
50 |
-
}
|
51 |
}
|
|
|
1 |
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
}
|
tokenizer.json
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
CHANGED
@@ -1,71 +1,63 @@
|
|
1 |
{
|
2 |
"added_tokens_decoder": {
|
3 |
"0": {
|
4 |
-
"content": "
|
5 |
"lstrip": false,
|
6 |
"normalized": false,
|
7 |
"rstrip": false,
|
8 |
"single_word": false,
|
9 |
"special": true
|
10 |
},
|
11 |
-
"
|
12 |
-
"content": "
|
13 |
"lstrip": false,
|
14 |
"normalized": false,
|
15 |
"rstrip": false,
|
16 |
"single_word": false,
|
17 |
"special": true
|
18 |
},
|
19 |
-
"
|
20 |
-
"content": "
|
21 |
"lstrip": false,
|
22 |
"normalized": false,
|
23 |
"rstrip": false,
|
24 |
"single_word": false,
|
25 |
"special": true
|
26 |
},
|
27 |
-
"
|
28 |
-
"content": "
|
29 |
-
"lstrip": false,
|
30 |
-
"normalized": true,
|
31 |
-
"rstrip": false,
|
32 |
-
"single_word": false,
|
33 |
-
"special": true
|
34 |
-
},
|
35 |
-
"104": {
|
36 |
-
"content": "[UNK]",
|
37 |
"lstrip": false,
|
38 |
"normalized": false,
|
39 |
"rstrip": false,
|
40 |
"single_word": false,
|
41 |
"special": true
|
42 |
},
|
43 |
-
"
|
44 |
-
"content": "
|
45 |
-
"lstrip":
|
46 |
"normalized": false,
|
47 |
"rstrip": false,
|
48 |
"single_word": false,
|
49 |
"special": true
|
50 |
}
|
51 |
},
|
52 |
-
"bos_token": "<s>",
|
53 |
"clean_up_tokenization_spaces": true,
|
54 |
-
"cls_token": "
|
|
|
55 |
"do_lower_case": true,
|
56 |
-
"
|
57 |
-
"mask_token": "<mask>",
|
58 |
"max_length": 128,
|
59 |
"model_max_length": 512,
|
|
|
60 |
"pad_to_multiple_of": null,
|
61 |
-
"pad_token": "
|
62 |
"pad_token_type_id": 0,
|
63 |
"padding_side": "right",
|
64 |
-
"sep_token": "
|
65 |
"stride": 0,
|
66 |
"strip_accents": null,
|
67 |
"tokenize_chinese_chars": true,
|
68 |
-
"tokenizer_class": "
|
69 |
"truncation_side": "right",
|
70 |
"truncation_strategy": "longest_first",
|
71 |
"unk_token": "[UNK]"
|
|
|
1 |
{
|
2 |
"added_tokens_decoder": {
|
3 |
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
"lstrip": false,
|
6 |
"normalized": false,
|
7 |
"rstrip": false,
|
8 |
"single_word": false,
|
9 |
"special": true
|
10 |
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
"lstrip": false,
|
14 |
"normalized": false,
|
15 |
"rstrip": false,
|
16 |
"single_word": false,
|
17 |
"special": true
|
18 |
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
"lstrip": false,
|
22 |
"normalized": false,
|
23 |
"rstrip": false,
|
24 |
"single_word": false,
|
25 |
"special": true
|
26 |
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
"lstrip": false,
|
30 |
"normalized": false,
|
31 |
"rstrip": false,
|
32 |
"single_word": false,
|
33 |
"special": true
|
34 |
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
"normalized": false,
|
39 |
"rstrip": false,
|
40 |
"single_word": false,
|
41 |
"special": true
|
42 |
}
|
43 |
},
|
|
|
44 |
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
|
|
49 |
"max_length": 128,
|
50 |
"model_max_length": 512,
|
51 |
+
"never_split": null,
|
52 |
"pad_to_multiple_of": null,
|
53 |
+
"pad_token": "[PAD]",
|
54 |
"pad_token_type_id": 0,
|
55 |
"padding_side": "right",
|
56 |
+
"sep_token": "[SEP]",
|
57 |
"stride": 0,
|
58 |
"strip_accents": null,
|
59 |
"tokenize_chinese_chars": true,
|
60 |
+
"tokenizer_class": "BertTokenizer",
|
61 |
"truncation_side": "right",
|
62 |
"truncation_strategy": "longest_first",
|
63 |
"unk_token": "[UNK]"
|
vocab.txt
CHANGED
@@ -1,7 +1,3 @@
|
|
1 |
-
<s>
|
2 |
-
<pad>
|
3 |
-
</s>
|
4 |
-
<unk>
|
5 |
[PAD]
|
6 |
[unused0]
|
7 |
[unused1]
|
@@ -30524,4 +30520,3 @@ necessitated
|
|
30524 |
##:
|
30525 |
##?
|
30526 |
##~
|
30527 |
-
<mask>
|
|
|
|
|
|
|
|
|
|
|
1 |
[PAD]
|
2 |
[unused0]
|
3 |
[unused1]
|
|
|
30520 |
##:
|
30521 |
##?
|
30522 |
##~
|
|