emaadshehzad commited on
Commit
6fee855
·
verified ·
1 Parent(s): 1a36572

Add SetFit model

Browse files
1_Pooling/config.json CHANGED
@@ -1,7 +1,9 @@
1
  {
2
- "word_embedding_dimension": 768,
3
  "pooling_mode_cls_token": false,
4
  "pooling_mode_mean_tokens": true,
5
  "pooling_mode_max_tokens": false,
6
- "pooling_mode_mean_sqrt_len_tokens": false
 
 
7
  }
 
1
  {
2
+ "word_embedding_dimension": 384,
3
  "pooling_mode_cls_token": false,
4
  "pooling_mode_mean_tokens": true,
5
  "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false
9
  }
README.md CHANGED
@@ -1,49 +1,131 @@
1
  ---
2
- license: apache-2.0
3
  tags:
4
  - setfit
5
  - sentence-transformers
6
  - text-classification
 
 
 
 
7
  pipeline_tag: text-classification
 
 
8
  ---
9
 
10
- # emaadshehzad/setfit-DK-V1
11
 
12
- This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
 
 
13
 
14
  1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
15
  2. Training a classification head with features from the fine-tuned Sentence Transformer.
16
 
17
- ## Usage
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
- To use this model for inference, first install the SetFit library:
20
 
21
  ```bash
22
- python -m pip install setfit
23
  ```
24
 
25
- You can then run inference as follows:
26
 
27
  ```python
28
  from setfit import SetFitModel
29
 
30
- # Download from Hub and run inference
31
  model = SetFitModel.from_pretrained("emaadshehzad/setfit-DK-V1")
32
  # Run inference
33
- preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
34
  ```
35
 
36
- ## BibTeX entry and citation info
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
  ```bibtex
39
  @article{https://doi.org/10.48550/arxiv.2209.11055,
40
- doi = {10.48550/ARXIV.2209.11055},
41
- url = {https://arxiv.org/abs/2209.11055},
42
- author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
43
- keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
44
- title = {Efficient Few-Shot Learning Without Prompts},
45
- publisher = {arXiv},
46
- year = {2022},
47
- copyright = {Creative Commons Attribution 4.0 International}
48
  }
49
  ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: setfit
3
  tags:
4
  - setfit
5
  - sentence-transformers
6
  - text-classification
7
+ - generated_from_setfit_trainer
8
+ metrics:
9
+ - accuracy
10
+ widget: []
11
  pipeline_tag: text-classification
12
+ inference: true
13
+ base_model: sentence-transformers/all-MiniLM-L12-v1
14
  ---
15
 
16
+ # SetFit with sentence-transformers/all-MiniLM-L12-v1
17
 
18
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-MiniLM-L12-v1](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v1) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
19
+
20
+ The model has been trained using an efficient few-shot learning technique that involves:
21
 
22
  1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
23
  2. Training a classification head with features from the fine-tuned Sentence Transformer.
24
 
25
+ ## Model Details
26
+
27
+ ### Model Description
28
+ - **Model Type:** SetFit
29
+ - **Sentence Transformer body:** [sentence-transformers/all-MiniLM-L12-v1](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v1)
30
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
31
+ - **Maximum Sequence Length:** 256 tokens
32
+ <!-- - **Number of Classes:** Unknown -->
33
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
34
+ <!-- - **Language:** Unknown -->
35
+ <!-- - **License:** Unknown -->
36
+
37
+ ### Model Sources
38
+
39
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
40
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
41
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
42
+
43
+ ## Uses
44
+
45
+ ### Direct Use for Inference
46
 
47
+ First install the SetFit library:
48
 
49
  ```bash
50
+ pip install setfit
51
  ```
52
 
53
+ Then you can load this model and run inference.
54
 
55
  ```python
56
  from setfit import SetFitModel
57
 
58
+ # Download from the 🤗 Hub
59
  model = SetFitModel.from_pretrained("emaadshehzad/setfit-DK-V1")
60
  # Run inference
61
+ preds = model("I loved the spiderman movie!")
62
  ```
63
 
64
+ <!--
65
+ ### Downstream Use
66
+
67
+ *List how someone could finetune this model on their own dataset.*
68
+ -->
69
+
70
+ <!--
71
+ ### Out-of-Scope Use
72
+
73
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
74
+ -->
75
+
76
+ <!--
77
+ ## Bias, Risks and Limitations
78
+
79
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
80
+ -->
81
 
82
+ <!--
83
+ ### Recommendations
84
+
85
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
86
+ -->
87
+
88
+ ## Training Details
89
+
90
+ ### Framework Versions
91
+ - Python: 3.10.12
92
+ - SetFit: 1.0.3
93
+ - Sentence Transformers: 2.3.1
94
+ - Transformers: 4.35.2
95
+ - PyTorch: 2.1.0+cu121
96
+ - Datasets: 2.16.1
97
+ - Tokenizers: 0.15.1
98
+
99
+ ## Citation
100
+
101
+ ### BibTeX
102
  ```bibtex
103
  @article{https://doi.org/10.48550/arxiv.2209.11055,
104
+ doi = {10.48550/ARXIV.2209.11055},
105
+ url = {https://arxiv.org/abs/2209.11055},
106
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
107
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
108
+ title = {Efficient Few-Shot Learning Without Prompts},
109
+ publisher = {arXiv},
110
+ year = {2022},
111
+ copyright = {Creative Commons Attribution 4.0 International}
112
  }
113
  ```
114
+
115
+ <!--
116
+ ## Glossary
117
+
118
+ *Clearly define terms in order to be accessible across audiences.*
119
+ -->
120
+
121
+ <!--
122
+ ## Model Card Authors
123
+
124
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
125
+ -->
126
+
127
+ <!--
128
+ ## Model Card Contact
129
+
130
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
131
+ -->
config.json CHANGED
@@ -1,24 +1,26 @@
1
  {
2
- "_name_or_path": "/root/.cache/torch/sentence_transformers/sentence-transformers_all-mpnet-base-v2/",
3
  "architectures": [
4
- "MPNetModel"
5
  ],
6
  "attention_probs_dropout_prob": 0.1,
7
- "bos_token_id": 0,
8
- "eos_token_id": 2,
9
  "hidden_act": "gelu",
10
  "hidden_dropout_prob": 0.1,
11
- "hidden_size": 768,
12
  "initializer_range": 0.02,
13
- "intermediate_size": 3072,
14
- "layer_norm_eps": 1e-05,
15
- "max_position_embeddings": 514,
16
- "model_type": "mpnet",
17
  "num_attention_heads": 12,
18
  "num_hidden_layers": 12,
19
- "pad_token_id": 1,
20
- "relative_attention_num_buckets": 32,
21
  "torch_dtype": "float32",
22
  "transformers_version": "4.35.2",
23
- "vocab_size": 30527
 
 
24
  }
 
1
  {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L12-v1",
3
  "architectures": [
4
+ "BertModel"
5
  ],
6
  "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
  "hidden_act": "gelu",
10
  "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
  "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
  "num_attention_heads": 12,
18
  "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
  "torch_dtype": "float32",
22
  "transformers_version": "4.35.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
  }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1ad7a74b5a7f0dea9c0f334ace69ea0cf75d1215f01999087c3fc951d6e8ba21
3
- size 437967672
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a401594dc69a998b9b9cbb94a7a1e9e92873b8fa57c4cb0fbf3cb6497992a573
3
+ size 133462128
model_head.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:edcc1a0c8535c9ec6d44dc0d0a39c056c8e9318baba1549ea5f70d0934da0906
3
- size 555599
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:04aba599b084c7bae433b8d655507feecb3e3fd9ad67b7082120ac2316a38a0a
3
+ size 272935
sentence_bert_config.json CHANGED
@@ -1,4 +1,4 @@
1
  {
2
- "max_seq_length": 384,
3
  "do_lower_case": false
4
  }
 
1
  {
2
+ "max_seq_length": 256,
3
  "do_lower_case": false
4
  }
special_tokens_map.json CHANGED
@@ -1,51 +1,7 @@
1
  {
2
- "bos_token": {
3
- "content": "<s>",
4
- "lstrip": false,
5
- "normalized": false,
6
- "rstrip": false,
7
- "single_word": false
8
- },
9
- "cls_token": {
10
- "content": "<s>",
11
- "lstrip": false,
12
- "normalized": true,
13
- "rstrip": false,
14
- "single_word": false
15
- },
16
- "eos_token": {
17
- "content": "</s>",
18
- "lstrip": false,
19
- "normalized": false,
20
- "rstrip": false,
21
- "single_word": false
22
- },
23
- "mask_token": {
24
- "content": "<mask>",
25
- "lstrip": true,
26
- "normalized": false,
27
- "rstrip": false,
28
- "single_word": false
29
- },
30
- "pad_token": {
31
- "content": "<pad>",
32
- "lstrip": false,
33
- "normalized": false,
34
- "rstrip": false,
35
- "single_word": false
36
- },
37
- "sep_token": {
38
- "content": "</s>",
39
- "lstrip": false,
40
- "normalized": true,
41
- "rstrip": false,
42
- "single_word": false
43
- },
44
- "unk_token": {
45
- "content": "[UNK]",
46
- "lstrip": false,
47
- "normalized": false,
48
- "rstrip": false,
49
- "single_word": false
50
- }
51
  }
 
1
  {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  }
tokenizer.json CHANGED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json CHANGED
@@ -1,71 +1,63 @@
1
  {
2
  "added_tokens_decoder": {
3
  "0": {
4
- "content": "<s>",
5
  "lstrip": false,
6
  "normalized": false,
7
  "rstrip": false,
8
  "single_word": false,
9
  "special": true
10
  },
11
- "1": {
12
- "content": "<pad>",
13
  "lstrip": false,
14
  "normalized": false,
15
  "rstrip": false,
16
  "single_word": false,
17
  "special": true
18
  },
19
- "2": {
20
- "content": "</s>",
21
  "lstrip": false,
22
  "normalized": false,
23
  "rstrip": false,
24
  "single_word": false,
25
  "special": true
26
  },
27
- "3": {
28
- "content": "<unk>",
29
- "lstrip": false,
30
- "normalized": true,
31
- "rstrip": false,
32
- "single_word": false,
33
- "special": true
34
- },
35
- "104": {
36
- "content": "[UNK]",
37
  "lstrip": false,
38
  "normalized": false,
39
  "rstrip": false,
40
  "single_word": false,
41
  "special": true
42
  },
43
- "30526": {
44
- "content": "<mask>",
45
- "lstrip": true,
46
  "normalized": false,
47
  "rstrip": false,
48
  "single_word": false,
49
  "special": true
50
  }
51
  },
52
- "bos_token": "<s>",
53
  "clean_up_tokenization_spaces": true,
54
- "cls_token": "<s>",
 
55
  "do_lower_case": true,
56
- "eos_token": "</s>",
57
- "mask_token": "<mask>",
58
  "max_length": 128,
59
  "model_max_length": 512,
 
60
  "pad_to_multiple_of": null,
61
- "pad_token": "<pad>",
62
  "pad_token_type_id": 0,
63
  "padding_side": "right",
64
- "sep_token": "</s>",
65
  "stride": 0,
66
  "strip_accents": null,
67
  "tokenize_chinese_chars": true,
68
- "tokenizer_class": "MPNetTokenizer",
69
  "truncation_side": "right",
70
  "truncation_strategy": "longest_first",
71
  "unk_token": "[UNK]"
 
1
  {
2
  "added_tokens_decoder": {
3
  "0": {
4
+ "content": "[PAD]",
5
  "lstrip": false,
6
  "normalized": false,
7
  "rstrip": false,
8
  "single_word": false,
9
  "special": true
10
  },
11
+ "100": {
12
+ "content": "[UNK]",
13
  "lstrip": false,
14
  "normalized": false,
15
  "rstrip": false,
16
  "single_word": false,
17
  "special": true
18
  },
19
+ "101": {
20
+ "content": "[CLS]",
21
  "lstrip": false,
22
  "normalized": false,
23
  "rstrip": false,
24
  "single_word": false,
25
  "special": true
26
  },
27
+ "102": {
28
+ "content": "[SEP]",
 
 
 
 
 
 
 
 
29
  "lstrip": false,
30
  "normalized": false,
31
  "rstrip": false,
32
  "single_word": false,
33
  "special": true
34
  },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
  "normalized": false,
39
  "rstrip": false,
40
  "single_word": false,
41
  "special": true
42
  }
43
  },
 
44
  "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
  "do_lower_case": true,
48
+ "mask_token": "[MASK]",
 
49
  "max_length": 128,
50
  "model_max_length": 512,
51
+ "never_split": null,
52
  "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
  "pad_token_type_id": 0,
55
  "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
  "stride": 0,
58
  "strip_accents": null,
59
  "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
  "truncation_side": "right",
62
  "truncation_strategy": "longest_first",
63
  "unk_token": "[UNK]"
vocab.txt CHANGED
@@ -1,7 +1,3 @@
1
- <s>
2
- <pad>
3
- </s>
4
- <unk>
5
  [PAD]
6
  [unused0]
7
  [unused1]
@@ -30524,4 +30520,3 @@ necessitated
30524
  ##:
30525
  ##?
30526
  ##~
30527
- <mask>
 
 
 
 
 
1
  [PAD]
2
  [unused0]
3
  [unused1]
 
30520
  ##:
30521
  ##?
30522
  ##~