Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +96 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 213.70 +/- 75.64
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5e50d2fb80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5e50d2fc10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5e50d2fca0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5e50d2fd30>", "_build": "<function ActorCriticPolicy._build at 0x7f5e50d2fdc0>", "forward": "<function ActorCriticPolicy.forward at 0x7f5e50d2fe50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5e50d2fee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5e50d2ff70>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5e50d35040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5e50d350d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5e50d35160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5e50d351f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5e50d325c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682202752446964382, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKBtGD7DbX47Jnw4vILCKLpL+SY9mXQYuwAAgD8AAIA/zdoCvYx7aj5DrEc8d2FrvrJXQ70fyyM9AAAAAAAAAACmvJw9Z/NXPkgbwr0LCZ2+fktOvMl7iD0AAAAAAAAAABq5Qz3sz7a7mpKTuxcXpzx6uxM9pKqMvQAAgD8AAIA/xvBovqsfZD/6slC+s0HevsgIYL661Vy8AAAAAAAAAADDkGa+xgOKP2YzCr8fbPS+6iCGvm7BCr4AAAAAAAAAAPoHJz6P2S28QxFqO+Wppbm4T5a9poGIugAAgD8AAIA/mp3gO9TUkLzPgBG9Psumu2F3AD7lGIU8AACAPwAAgD8aIzc+WvESP37rRb7xGKG+0yECPW5bX70AAAAAAAAAAGYngz0KVR481uQavrqFjL4Dz4m9rQbhPAAAAAAAAAAAYMhQPocEJz8OER++uom5vqiEGT3bXhW7AAAAAAAAAAAzHvw8TShOP8gdY73U1Z++v7IhPfw4Mb0AAAAAAAAAAJratT3nGhc/Wq0wPUb6lL6aah49rDM4PQAAAAAAAAAAcKBkvjDtKz/STyM+0tKYvgov2b07lPS8AAAAAAAAAAAz+iq9BWyJuyrL8T3g4tc8DZQHvMYqGLwAAIA/AACAP5qqg7y016Y+CKvgOz6+Nr7YuSs9eIBZPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISz0LQjltcUCUhpRSlIwBbJRNewGMAXSUR0CW1U55Z8rqdX2UKGgGaAloD0MI2bJ8XYZSb0CUhpRSlGgVTR8BaBZHQJbWFGH58Bx1fZQoaAZoCWgPQwiP4hx1dFtyQJSGlFKUaBVNpwFoFkdAltaRD5TIenV9lChoBmgJaA9DCK+ZfLNNmnFAlIaUUpRoFU0nAWgWR0CW1tsjFAE/dX2UKGgGaAloD0MI/aIE/YWYcUCUhpRSlGgVTTYBaBZHQJbXacbzbvh1fZQoaAZoCWgPQwg9YB4ypW5wQJSGlFKUaBVNUQFoFkdAlthTslb/wXV9lChoBmgJaA9DCM5uLZNhCm5AlIaUUpRoFU0nAWgWR0CW2NwaR6njdX2UKGgGaAloD0MIrKqX3+mrcUCUhpRSlGgVTR8BaBZHQJbY69i+cpd1fZQoaAZoCWgPQwjg2R694U1tQJSGlFKUaBVNEQFoFkdAltkk/bCaZ3V9lChoBmgJaA9DCG0gXWzaAXJAlIaUUpRoFU00AWgWR0CW2fjmCAc1dX2UKGgGaAloD0MIcHmsGZklc0CUhpRSlGgVTYEBaBZHQJbacXN1QqJ1fZQoaAZoCWgPQwgKL8Gpj4ZyQJSGlFKUaBVNKAFoFkdAltrAv114gXV9lChoBmgJaA9DCFmJeVbSU3JAlIaUUpRoFU0HAWgWR0CW2vFH8TBZdX2UKGgGaAloD0MIqb9eYUEackCUhpRSlGgVTRkBaBZHQJbc4qbz9TB1fZQoaAZoCWgPQwjluFM62KNvQJSGlFKUaBVNdwFoFkdAlt6Dk6tDD3V9lChoBmgJaA9DCFd2weAa4nFAlIaUUpRoFU02AWgWR0CW347laKUFdX2UKGgGaAloD0MIZXCUvDpMcECUhpRSlGgVTRgBaBZHQJbgMa6z3RJ1fZQoaAZoCWgPQwiNXg1QGpZvQJSGlFKUaBVL/WgWR0CW4FRL9MsZdX2UKGgGaAloD0MIIo0KnGyLcUCUhpRSlGgVTW4BaBZHQJbhSO6unuR1fZQoaAZoCWgPQwiTHRuBuAVwQJSGlFKUaBVNDgFoFkdAluKJYcNpd3V9lChoBmgJaA9DCBueXinLVG9AlIaUUpRoFU1IAWgWR0CW4tS8an76dX2UKGgGaAloD0MIq+rld9pdckCUhpRSlGgVTXUBaBZHQJbjoHNX5nF1fZQoaAZoCWgPQwih98YQgJhsQJSGlFKUaBVNFwFoFkdAluPEUj9n9XV9lChoBmgJaA9DCFUxlX7CknBAlIaUUpRoFU1VAWgWR0CW5sCK77KrdX2UKGgGaAloD0MIzJntCn3GcECUhpRSlGgVTUkBaBZHQJbpAy1uzhR1fZQoaAZoCWgPQwh6whIPqPdxQJSGlFKUaBVNRAFoFkdAluk3jp9qlHV9lChoBmgJaA9DCCqLwi6Kbm1AlIaUUpRoFU0/AWgWR0CW6Tma6STydX2UKGgGaAloD0MI04TtJyMpc0CUhpRSlGgVTWsBaBZHQJbp1i/fwZx1fZQoaAZoCWgPQwiMu0G01oVvQJSGlFKUaBVNGwFoFkdAlun54jbBXXV9lChoBmgJaA9DCF2kUBb+W3BAlIaUUpRoFU03AWgWR0CW7Px9oexOdX2UKGgGaAloD0MIO3E5XgHfbUCUhpRSlGgVTRIBaBZHQJbtFoDgZTB1fZQoaAZoCWgPQwjpSZnU0FJyQJSGlFKUaBVNHAFoFkdAlu5NzGPxQXV9lChoBmgJaA9DCFtDqb1I+XFAlIaUUpRoFU1UAWgWR0CW7151vES/dX2UKGgGaAloD0MIPs+fNqr/cECUhpRSlGgVTQsBaBZHQJbvmxX4j8l1fZQoaAZoCWgPQwjdDDfg84JvQJSGlFKUaBVNhQFoFkdAlvDEY8+zMXV9lChoBmgJaA9DCIo6cw8JrXJAlIaUUpRoFU1HAWgWR0CW8SNlAeJYdX2UKGgGaAloD0MIrBvvjsxIckCUhpRSlGgVTSQBaBZHQJbzCHUMG5d1fZQoaAZoCWgPQwhuwOeHEYJiQJSGlFKUaBVNgwJoFkdAlvPGH58BuHV9lChoBmgJaA9DCCRIpdhRxHBAlIaUUpRoFU0TAWgWR0CW9NigCfYjdX2UKGgGaAloD0MIZ/FiYQgwckCUhpRSlGgVTSgBaBZHQJb07HS4OMF1fZQoaAZoCWgPQwjbFfpgmYlwQJSGlFKUaBVNTwFoFkdAlvaGOhkAgnV9lChoBmgJaA9DCEQWaeLdIHNAlIaUUpRoFU0LAWgWR0CW9zUcXFcZdX2UKGgGaAloD0MICydp/pjlbkCUhpRSlGgVTXMBaBZHQJb3/OqvNeN1fZQoaAZoCWgPQwhRhxVu+Q9vQJSGlFKUaBVNKgFoFkdAlvhQBT4tYnV9lChoBmgJaA9DCMCXwoPm33JAlIaUUpRoFU0WAWgWR0CW+jkGA09AdX2UKGgGaAloD0MISpaTUHqEcUCUhpRSlGgVTT0BaBZHQJb6WAUcn3N1fZQoaAZoCWgPQwh0XmOXKBdxQJSGlFKUaBVNuAFoFkdAlvr+P/7zkXV9lChoBmgJaA9DCJ8fRggPOG9AlIaUUpRoFU0VAWgWR0CW+5UWEbo9dX2UKGgGaAloD0MICCKLNPFmS0CUhpRSlGgVS9hoFkdAlwzt0NjLCHV9lChoBmgJaA9DCLb2PlVFYXFAlIaUUpRoFU1KAWgWR0CXDSbSJCSidX2UKGgGaAloD0MImPbN/VXzckCUhpRSlGgVTSsBaBZHQJcOE1TBInV1fZQoaAZoCWgPQwjOpbiq7CJwQJSGlFKUaBVNnQFoFkdAlw6vJiiItXV9lChoBmgJaA9DCPLR4oxhhW9AlIaUUpRoFU09AWgWR0CXD0XpW3jNdX2UKGgGaAloD0MIwcdgxSktaECUhpRSlGgVTcQCaBZHQJcPrsZ5zHV1fZQoaAZoCWgPQwjTMlLvKSBxQJSGlFKUaBVNNAFoFkdAlw/wbhm5D3V9lChoBmgJaA9DCCBgrdo1jXFAlIaUUpRoFU0TAWgWR0CXEDhMajvedX2UKGgGaAloD0MI4NdIEgSvbECUhpRSlGgVTQUDaBZHQJcQ3kiliz91fZQoaAZoCWgPQwj5MeaupYFxQJSGlFKUaBVNRwFoFkdAlxMT/6wdKnV9lChoBmgJaA9DCAdi2cwh83BAlIaUUpRoFU02AWgWR0CXFFzpX6qLdX2UKGgGaAloD0MIqRJlbynFcECUhpRSlGgVTT8BaBZHQJcUlbKRuCR1fZQoaAZoCWgPQwgom3KFN8VyQJSGlFKUaBVNkQFoFkdAlxSu45Lh73V9lChoBmgJaA9DCI/iHHU0CHJAlIaUUpRoFU0oAWgWR0CXFUPZZjhDdX2UKGgGaAloD0MI0hito2qOcECUhpRSlGgVTUMBaBZHQJcVtg5R0lt1fZQoaAZoCWgPQwgWokPgiBVxQJSGlFKUaBVNnAFoFkdAlxYEq2Bre3V9lChoBmgJaA9DCBlXXByVmx1AlIaUUpRoFUvfaBZHQJcW0Jv5xip1fZQoaAZoCWgPQwgMPzifOuJFQJSGlFKUaBVLr2gWR0CXFxAOavzOdX2UKGgGaAloD0MIey5Tk+CYbkCUhpRSlGgVTSsBaBZHQJcXNtelbeN1fZQoaAZoCWgPQwgTtwpi4DBwQJSGlFKUaBVNOwFoFkdAlxeKz7di2HV9lChoBmgJaA9DCBaGyOnrDHJAlIaUUpRoFU0iAWgWR0CXGIgYxcmjdX2UKGgGaAloD0MIZhTLLS1NcECUhpRSlGgVTU0BaBZHQJcZb8Jlar51fZQoaAZoCWgPQwgn2H+dW+RwQJSGlFKUaBVNNwFoFkdAlxpoSg5BC3V9lChoBmgJaA9DCEsC1NTyjXFAlIaUUpRoFU1HAWgWR0CXG0an752ydX2UKGgGaAloD0MIowc+BisPbkCUhpRSlGgVTRwBaBZHQJcd8BikO7R1fZQoaAZoCWgPQwgktrsHqAFxQJSGlFKUaBVNNQFoFkdAlyE4KQaJh3V9lChoBmgJaA9DCElKehjakG5AlIaUUpRoFU0yAWgWR0CXIWVLzwtrdX2UKGgGaAloD0MIrdwLzAq+cECUhpRSlGgVTS0BaBZHQJcic2tMfzV1fZQoaAZoCWgPQwjvVMA9jxJyQJSGlFKUaBVNRgFoFkdAlyKSU9pyqHV9lChoBmgJaA9DCCr9hLPbR3JAlIaUUpRoFU3bAWgWR0CXIt9L6DXfdX2UKGgGaAloD0MIlbcjnFaxcECUhpRSlGgVTSUBaBZHQJcjY+0PYnR1fZQoaAZoCWgPQwjpmsk3W4lyQJSGlFKUaBVNLQFoFkdAlyQEKu0TlHV9lChoBmgJaA9DCAmISbiQRm5AlIaUUpRoFU0CAWgWR0CXJAcslLOBdX2UKGgGaAloD0MIpYKKqt8fakCUhpRSlGgVTVABaBZHQJckcLpiZv11fZQoaAZoCWgPQwj9M4P4wG4eQJSGlFKUaBVL32gWR0CXJLRc/t6YdX2UKGgGaAloD0MIEEBqE2fucECUhpRSlGgVTWoBaBZHQJckycH4XXR1fZQoaAZoCWgPQwjizK/mwP5xQJSGlFKUaBVNSwFoFkdAlyVJIpYs/nV9lChoBmgJaA9DCMFvQ4yXb3JAlIaUUpRoFU1UAWgWR0CXJ3PepGWldX2UKGgGaAloD0MIeSPzyN+DcUCUhpRSlGgVTaUBaBZHQJcoK4z7/GV1fZQoaAZoCWgPQwhszOuIQ45NQJSGlFKUaBVLw2gWR0CXKFd4VymzdX2UKGgGaAloD0MINstlo3OScUCUhpRSlGgVTSwBaBZHQJcpdBSk0rN1fZQoaAZoCWgPQwiatn9lpWZtQJSGlFKUaBVNeQFoFkdAlynWHgxagXV9lChoBmgJaA9DCKjg8IKIeklAlIaUUpRoFUvJaBZHQJcp+8mKIi11fZQoaAZoCWgPQwjtYprp3lFyQJSGlFKUaBVNKAFoFkdAlytKab4Ju3V9lChoBmgJaA9DCBk4oKUrQG5AlIaUUpRoFU0SAWgWR0CXK0dvsJIEdX2UKGgGaAloD0MIQX42ch2GcUCUhpRSlGgVTSoBaBZHQJcsP9If8uV1fZQoaAZoCWgPQwjNBplk5DZxQJSGlFKUaBVNNgFoFkdAlyxeHerMknV9lChoBmgJaA9DCHU90XWhGnJAlIaUUpRoFU0aAWgWR0CXLMVCHARDdX2UKGgGaAloD0MIUpliDkKCcUCUhpRSlGgVTQQBaBZHQJcs1yn1nNB1fZQoaAZoCWgPQwgXD+85sAptQJSGlFKUaBVNMAFoFkdAly2YixFAmnV9lChoBmgJaA9DCExxVdl3Wm9AlIaUUpRoFU1jAWgWR0CXLhTbWVeKdX2UKGgGaAloD0MI2xX6YBnzcUCUhpRSlGgVTWoBaBZHQJcun2lEZzh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bf9bc5d59af09da94bfc9b0e4db3670d8b967e500e0b83aa4a97eeda885044b4
|
3 |
+
size 147387
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f5e50d2fb80>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5e50d2fc10>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5e50d2fca0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5e50d2fd30>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f5e50d2fdc0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f5e50d2fe50>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5e50d2fee0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5e50d2ff70>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f5e50d35040>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5e50d350d0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5e50d35160>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5e50d351f0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f5e50d325c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1682202752446964382,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"lr_schedule": {
|
33 |
+
":type:": "<class 'function'>",
|
34 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
35 |
+
},
|
36 |
+
"_last_obs": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKBtGD7DbX47Jnw4vILCKLpL+SY9mXQYuwAAgD8AAIA/zdoCvYx7aj5DrEc8d2FrvrJXQ70fyyM9AAAAAAAAAACmvJw9Z/NXPkgbwr0LCZ2+fktOvMl7iD0AAAAAAAAAABq5Qz3sz7a7mpKTuxcXpzx6uxM9pKqMvQAAgD8AAIA/xvBovqsfZD/6slC+s0HevsgIYL661Vy8AAAAAAAAAADDkGa+xgOKP2YzCr8fbPS+6iCGvm7BCr4AAAAAAAAAAPoHJz6P2S28QxFqO+Wppbm4T5a9poGIugAAgD8AAIA/mp3gO9TUkLzPgBG9Psumu2F3AD7lGIU8AACAPwAAgD8aIzc+WvESP37rRb7xGKG+0yECPW5bX70AAAAAAAAAAGYngz0KVR481uQavrqFjL4Dz4m9rQbhPAAAAAAAAAAAYMhQPocEJz8OER++uom5vqiEGT3bXhW7AAAAAAAAAAAzHvw8TShOP8gdY73U1Z++v7IhPfw4Mb0AAAAAAAAAAJratT3nGhc/Wq0wPUb6lL6aah49rDM4PQAAAAAAAAAAcKBkvjDtKz/STyM+0tKYvgov2b07lPS8AAAAAAAAAAAz+iq9BWyJuyrL8T3g4tc8DZQHvMYqGLwAAIA/AACAP5qqg7y016Y+CKvgOz6+Nr7YuSs9eIBZPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_episode_starts": {
|
41 |
+
":type:": "<class 'numpy.ndarray'>",
|
42 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
43 |
+
},
|
44 |
+
"_last_original_obs": null,
|
45 |
+
"_episode_num": 0,
|
46 |
+
"use_sde": false,
|
47 |
+
"sde_sample_freq": -1,
|
48 |
+
"_current_progress_remaining": -0.015808000000000044,
|
49 |
+
"_stats_window_size": 100,
|
50 |
+
"ep_info_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISz0LQjltcUCUhpRSlIwBbJRNewGMAXSUR0CW1U55Z8rqdX2UKGgGaAloD0MI2bJ8XYZSb0CUhpRSlGgVTR8BaBZHQJbWFGH58Bx1fZQoaAZoCWgPQwiP4hx1dFtyQJSGlFKUaBVNpwFoFkdAltaRD5TIenV9lChoBmgJaA9DCK+ZfLNNmnFAlIaUUpRoFU0nAWgWR0CW1tsjFAE/dX2UKGgGaAloD0MI/aIE/YWYcUCUhpRSlGgVTTYBaBZHQJbXacbzbvh1fZQoaAZoCWgPQwg9YB4ypW5wQJSGlFKUaBVNUQFoFkdAlthTslb/wXV9lChoBmgJaA9DCM5uLZNhCm5AlIaUUpRoFU0nAWgWR0CW2NwaR6njdX2UKGgGaAloD0MIrKqX3+mrcUCUhpRSlGgVTR8BaBZHQJbY69i+cpd1fZQoaAZoCWgPQwjg2R694U1tQJSGlFKUaBVNEQFoFkdAltkk/bCaZ3V9lChoBmgJaA9DCG0gXWzaAXJAlIaUUpRoFU00AWgWR0CW2fjmCAc1dX2UKGgGaAloD0MIcHmsGZklc0CUhpRSlGgVTYEBaBZHQJbacXN1QqJ1fZQoaAZoCWgPQwgKL8Gpj4ZyQJSGlFKUaBVNKAFoFkdAltrAv114gXV9lChoBmgJaA9DCFmJeVbSU3JAlIaUUpRoFU0HAWgWR0CW2vFH8TBZdX2UKGgGaAloD0MIqb9eYUEackCUhpRSlGgVTRkBaBZHQJbc4qbz9TB1fZQoaAZoCWgPQwjluFM62KNvQJSGlFKUaBVNdwFoFkdAlt6Dk6tDD3V9lChoBmgJaA9DCFd2weAa4nFAlIaUUpRoFU02AWgWR0CW347laKUFdX2UKGgGaAloD0MIZXCUvDpMcECUhpRSlGgVTRgBaBZHQJbgMa6z3RJ1fZQoaAZoCWgPQwiNXg1QGpZvQJSGlFKUaBVL/WgWR0CW4FRL9MsZdX2UKGgGaAloD0MIIo0KnGyLcUCUhpRSlGgVTW4BaBZHQJbhSO6unuR1fZQoaAZoCWgPQwiTHRuBuAVwQJSGlFKUaBVNDgFoFkdAluKJYcNpd3V9lChoBmgJaA9DCBueXinLVG9AlIaUUpRoFU1IAWgWR0CW4tS8an76dX2UKGgGaAloD0MIq+rld9pdckCUhpRSlGgVTXUBaBZHQJbjoHNX5nF1fZQoaAZoCWgPQwih98YQgJhsQJSGlFKUaBVNFwFoFkdAluPEUj9n9XV9lChoBmgJaA9DCFUxlX7CknBAlIaUUpRoFU1VAWgWR0CW5sCK77KrdX2UKGgGaAloD0MIzJntCn3GcECUhpRSlGgVTUkBaBZHQJbpAy1uzhR1fZQoaAZoCWgPQwh6whIPqPdxQJSGlFKUaBVNRAFoFkdAluk3jp9qlHV9lChoBmgJaA9DCCqLwi6Kbm1AlIaUUpRoFU0/AWgWR0CW6Tma6STydX2UKGgGaAloD0MI04TtJyMpc0CUhpRSlGgVTWsBaBZHQJbp1i/fwZx1fZQoaAZoCWgPQwiMu0G01oVvQJSGlFKUaBVNGwFoFkdAlun54jbBXXV9lChoBmgJaA9DCF2kUBb+W3BAlIaUUpRoFU03AWgWR0CW7Px9oexOdX2UKGgGaAloD0MIO3E5XgHfbUCUhpRSlGgVTRIBaBZHQJbtFoDgZTB1fZQoaAZoCWgPQwjpSZnU0FJyQJSGlFKUaBVNHAFoFkdAlu5NzGPxQXV9lChoBmgJaA9DCFtDqb1I+XFAlIaUUpRoFU1UAWgWR0CW7151vES/dX2UKGgGaAloD0MIPs+fNqr/cECUhpRSlGgVTQsBaBZHQJbvmxX4j8l1fZQoaAZoCWgPQwjdDDfg84JvQJSGlFKUaBVNhQFoFkdAlvDEY8+zMXV9lChoBmgJaA9DCIo6cw8JrXJAlIaUUpRoFU1HAWgWR0CW8SNlAeJYdX2UKGgGaAloD0MIrBvvjsxIckCUhpRSlGgVTSQBaBZHQJbzCHUMG5d1fZQoaAZoCWgPQwhuwOeHEYJiQJSGlFKUaBVNgwJoFkdAlvPGH58BuHV9lChoBmgJaA9DCCRIpdhRxHBAlIaUUpRoFU0TAWgWR0CW9NigCfYjdX2UKGgGaAloD0MIZ/FiYQgwckCUhpRSlGgVTSgBaBZHQJb07HS4OMF1fZQoaAZoCWgPQwjbFfpgmYlwQJSGlFKUaBVNTwFoFkdAlvaGOhkAgnV9lChoBmgJaA9DCEQWaeLdIHNAlIaUUpRoFU0LAWgWR0CW9zUcXFcZdX2UKGgGaAloD0MICydp/pjlbkCUhpRSlGgVTXMBaBZHQJb3/OqvNeN1fZQoaAZoCWgPQwhRhxVu+Q9vQJSGlFKUaBVNKgFoFkdAlvhQBT4tYnV9lChoBmgJaA9DCMCXwoPm33JAlIaUUpRoFU0WAWgWR0CW+jkGA09AdX2UKGgGaAloD0MISpaTUHqEcUCUhpRSlGgVTT0BaBZHQJb6WAUcn3N1fZQoaAZoCWgPQwh0XmOXKBdxQJSGlFKUaBVNuAFoFkdAlvr+P/7zkXV9lChoBmgJaA9DCJ8fRggPOG9AlIaUUpRoFU0VAWgWR0CW+5UWEbo9dX2UKGgGaAloD0MICCKLNPFmS0CUhpRSlGgVS9hoFkdAlwzt0NjLCHV9lChoBmgJaA9DCLb2PlVFYXFAlIaUUpRoFU1KAWgWR0CXDSbSJCSidX2UKGgGaAloD0MImPbN/VXzckCUhpRSlGgVTSsBaBZHQJcOE1TBInV1fZQoaAZoCWgPQwjOpbiq7CJwQJSGlFKUaBVNnQFoFkdAlw6vJiiItXV9lChoBmgJaA9DCPLR4oxhhW9AlIaUUpRoFU09AWgWR0CXD0XpW3jNdX2UKGgGaAloD0MIwcdgxSktaECUhpRSlGgVTcQCaBZHQJcPrsZ5zHV1fZQoaAZoCWgPQwjTMlLvKSBxQJSGlFKUaBVNNAFoFkdAlw/wbhm5D3V9lChoBmgJaA9DCCBgrdo1jXFAlIaUUpRoFU0TAWgWR0CXEDhMajvedX2UKGgGaAloD0MI4NdIEgSvbECUhpRSlGgVTQUDaBZHQJcQ3kiliz91fZQoaAZoCWgPQwj5MeaupYFxQJSGlFKUaBVNRwFoFkdAlxMT/6wdKnV9lChoBmgJaA9DCAdi2cwh83BAlIaUUpRoFU02AWgWR0CXFFzpX6qLdX2UKGgGaAloD0MIqRJlbynFcECUhpRSlGgVTT8BaBZHQJcUlbKRuCR1fZQoaAZoCWgPQwgom3KFN8VyQJSGlFKUaBVNkQFoFkdAlxSu45Lh73V9lChoBmgJaA9DCI/iHHU0CHJAlIaUUpRoFU0oAWgWR0CXFUPZZjhDdX2UKGgGaAloD0MI0hito2qOcECUhpRSlGgVTUMBaBZHQJcVtg5R0lt1fZQoaAZoCWgPQwgWokPgiBVxQJSGlFKUaBVNnAFoFkdAlxYEq2Bre3V9lChoBmgJaA9DCBlXXByVmx1AlIaUUpRoFUvfaBZHQJcW0Jv5xip1fZQoaAZoCWgPQwgMPzifOuJFQJSGlFKUaBVLr2gWR0CXFxAOavzOdX2UKGgGaAloD0MIey5Tk+CYbkCUhpRSlGgVTSsBaBZHQJcXNtelbeN1fZQoaAZoCWgPQwgTtwpi4DBwQJSGlFKUaBVNOwFoFkdAlxeKz7di2HV9lChoBmgJaA9DCBaGyOnrDHJAlIaUUpRoFU0iAWgWR0CXGIgYxcmjdX2UKGgGaAloD0MIZhTLLS1NcECUhpRSlGgVTU0BaBZHQJcZb8Jlar51fZQoaAZoCWgPQwgn2H+dW+RwQJSGlFKUaBVNNwFoFkdAlxpoSg5BC3V9lChoBmgJaA9DCEsC1NTyjXFAlIaUUpRoFU1HAWgWR0CXG0an752ydX2UKGgGaAloD0MIowc+BisPbkCUhpRSlGgVTRwBaBZHQJcd8BikO7R1fZQoaAZoCWgPQwgktrsHqAFxQJSGlFKUaBVNNQFoFkdAlyE4KQaJh3V9lChoBmgJaA9DCElKehjakG5AlIaUUpRoFU0yAWgWR0CXIWVLzwtrdX2UKGgGaAloD0MIrdwLzAq+cECUhpRSlGgVTS0BaBZHQJcic2tMfzV1fZQoaAZoCWgPQwjvVMA9jxJyQJSGlFKUaBVNRgFoFkdAlyKSU9pyqHV9lChoBmgJaA9DCCr9hLPbR3JAlIaUUpRoFU3bAWgWR0CXIt9L6DXfdX2UKGgGaAloD0MIlbcjnFaxcECUhpRSlGgVTSUBaBZHQJcjY+0PYnR1fZQoaAZoCWgPQwjpmsk3W4lyQJSGlFKUaBVNLQFoFkdAlyQEKu0TlHV9lChoBmgJaA9DCAmISbiQRm5AlIaUUpRoFU0CAWgWR0CXJAcslLOBdX2UKGgGaAloD0MIpYKKqt8fakCUhpRSlGgVTVABaBZHQJckcLpiZv11fZQoaAZoCWgPQwj9M4P4wG4eQJSGlFKUaBVL32gWR0CXJLRc/t6YdX2UKGgGaAloD0MIEEBqE2fucECUhpRSlGgVTWoBaBZHQJckycH4XXR1fZQoaAZoCWgPQwjizK/mwP5xQJSGlFKUaBVNSwFoFkdAlyVJIpYs/nV9lChoBmgJaA9DCMFvQ4yXb3JAlIaUUpRoFU1UAWgWR0CXJ3PepGWldX2UKGgGaAloD0MIeSPzyN+DcUCUhpRSlGgVTaUBaBZHQJcoK4z7/GV1fZQoaAZoCWgPQwhszOuIQ45NQJSGlFKUaBVLw2gWR0CXKFd4VymzdX2UKGgGaAloD0MINstlo3OScUCUhpRSlGgVTSwBaBZHQJcpdBSk0rN1fZQoaAZoCWgPQwiatn9lpWZtQJSGlFKUaBVNeQFoFkdAlynWHgxagXV9lChoBmgJaA9DCKjg8IKIeklAlIaUUpRoFUvJaBZHQJcp+8mKIi11fZQoaAZoCWgPQwjtYprp3lFyQJSGlFKUaBVNKAFoFkdAlytKab4Ju3V9lChoBmgJaA9DCBk4oKUrQG5AlIaUUpRoFU0SAWgWR0CXK0dvsJIEdX2UKGgGaAloD0MIQX42ch2GcUCUhpRSlGgVTSoBaBZHQJcsP9If8uV1fZQoaAZoCWgPQwjNBplk5DZxQJSGlFKUaBVNNgFoFkdAlyxeHerMknV9lChoBmgJaA9DCHU90XWhGnJAlIaUUpRoFU0aAWgWR0CXLMVCHARDdX2UKGgGaAloD0MIUpliDkKCcUCUhpRSlGgVTQQBaBZHQJcs1yn1nNB1fZQoaAZoCWgPQwgXD+85sAptQJSGlFKUaBVNMAFoFkdAly2YixFAmnV9lChoBmgJaA9DCExxVdl3Wm9AlIaUUpRoFU1jAWgWR0CXLhTbWVeKdX2UKGgGaAloD0MI2xX6YBnzcUCUhpRSlGgVTWoBaBZHQJcun2lEZzh1ZS4="
|
53 |
+
},
|
54 |
+
"ep_success_buffer": {
|
55 |
+
":type:": "<class 'collections.deque'>",
|
56 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
57 |
+
},
|
58 |
+
"_n_updates": 248,
|
59 |
+
"observation_space": {
|
60 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
61 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
62 |
+
"dtype": "float32",
|
63 |
+
"_shape": [
|
64 |
+
8
|
65 |
+
],
|
66 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
67 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
68 |
+
"bounded_below": "[False False False False False False False False]",
|
69 |
+
"bounded_above": "[False False False False False False False False]",
|
70 |
+
"_np_random": null
|
71 |
+
},
|
72 |
+
"action_space": {
|
73 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
74 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
75 |
+
"n": 4,
|
76 |
+
"_shape": [],
|
77 |
+
"dtype": "int64",
|
78 |
+
"_np_random": null
|
79 |
+
},
|
80 |
+
"n_envs": 16,
|
81 |
+
"n_steps": 1024,
|
82 |
+
"gamma": 0.999,
|
83 |
+
"gae_lambda": 0.98,
|
84 |
+
"ent_coef": 0.01,
|
85 |
+
"vf_coef": 0.5,
|
86 |
+
"max_grad_norm": 0.5,
|
87 |
+
"batch_size": 64,
|
88 |
+
"n_epochs": 4,
|
89 |
+
"clip_range": {
|
90 |
+
":type:": "<class 'function'>",
|
91 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
92 |
+
},
|
93 |
+
"clip_range_vf": null,
|
94 |
+
"normalize_advantage": true,
|
95 |
+
"target_kl": null
|
96 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b07f3f84ef204aa0829c744fc1bce3ef5e2a5b6e217cccd95afa4fe607d7a49e
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:abe711dc73eee124ba2068df3dedd71f9514e191834243cb71c13c15eb0d4658
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (252 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 213.6970395454247, "std_reward": 75.63587694147813, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-22T23:05:15.148131"}
|