elsayovita commited on
Commit
f3d41f0
1 Parent(s): 2198a4f

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,803 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-base-en-v1.5
3
+ datasets: []
4
+ language:
5
+ - en
6
+ library_name: sentence-transformers
7
+ license: apache-2.0
8
+ metrics:
9
+ - cosine_accuracy@1
10
+ - cosine_accuracy@3
11
+ - cosine_accuracy@5
12
+ - cosine_accuracy@10
13
+ - cosine_precision@1
14
+ - cosine_precision@3
15
+ - cosine_precision@5
16
+ - cosine_precision@10
17
+ - cosine_recall@1
18
+ - cosine_recall@3
19
+ - cosine_recall@5
20
+ - cosine_recall@10
21
+ - cosine_ndcg@10
22
+ - cosine_mrr@10
23
+ - cosine_map@100
24
+ pipeline_tag: sentence-similarity
25
+ tags:
26
+ - sentence-transformers
27
+ - sentence-similarity
28
+ - feature-extraction
29
+ - generated_from_trainer
30
+ - dataset_size:6300
31
+ - loss:MatryoshkaLoss
32
+ - loss:MultipleNegativesRankingLoss
33
+ widget:
34
+ - source_sentence: The net interest income for the first quarter of 2023 was $14,448
35
+ million.
36
+ sentences:
37
+ - What was the fair value of investments in fixed maturity securities at the end
38
+ of 2023 after a hypothetical 100 basis point increase in interest rates?
39
+ - What was the net interest income for the first quarter of 2023?
40
+ - What are the expected consequences of the EMIR 3.0 proposals for ICE Futures Europe
41
+ and ICE Clear Europe?
42
+ - source_sentence: The consolidated financial statements and accompanying notes are
43
+ listed in Part IV, Item 15(a)(1) of the Annual Report on Form 10-K
44
+ sentences:
45
+ - What was the total amount invested in purchases from Vebu during the year ended
46
+ December 31, 2023?
47
+ - What section of the Annual Report on Form 10-K includes the consolidated financial
48
+ statements and accompanying notes?
49
+ - What is the purpose of using constant currency to measure financial performance?
50
+ - source_sentence: Cash provided by operating activities was impacted by the provision
51
+ from the Tax Cuts and Jobs Act of 2017 which became effective in fiscal 2023 and
52
+ requires the capitalization and amortization of research and development costs.
53
+ The change increased our cash taxes paid in fiscal 2023.
54
+ sentences:
55
+ - How much did the provision from the Tax Cuts and Jobs Act increase the cash taxes
56
+ paid in fiscal 2023?
57
+ - What is the principal amount of debt maturing in fiscal year 2023?
58
+ - What is the projected increase in effective tax rate starting from fiscal 2024?
59
+ - source_sentence: Item 8. Financial Statements and Supplementary Data.
60
+ sentences:
61
+ - How does FedEx Express primarily fulfill its jet fuel needs?
62
+ - What legislative act in the United States established a new corporate alternative
63
+ minimum tax of 15% on large corporations?
64
+ - What is the title of Item 8 that covers financial data in the report?
65
+ - source_sentence: Electronic Arts paid cash dividends totaling $210 million during
66
+ the fiscal year ended March 31, 2023.
67
+ sentences:
68
+ - What was the total cash dividend paid by Electronic Arts in the fiscal year ended
69
+ March 31, 2023?
70
+ - What was the SRO's accrued amount as a receivable for CAT implementation expenses
71
+ as of December 31, 2023?
72
+ - What percentage of our total U.S. dialysis patients in 2023 was covered under
73
+ some form of government-based program?
74
+ model-index:
75
+ - name: BGE base Financial Matryoshka
76
+ results:
77
+ - task:
78
+ type: information-retrieval
79
+ name: Information Retrieval
80
+ dataset:
81
+ name: dim 768
82
+ type: dim_768
83
+ metrics:
84
+ - type: cosine_accuracy@1
85
+ value: 0.6842857142857143
86
+ name: Cosine Accuracy@1
87
+ - type: cosine_accuracy@3
88
+ value: 0.8128571428571428
89
+ name: Cosine Accuracy@3
90
+ - type: cosine_accuracy@5
91
+ value: 0.86
92
+ name: Cosine Accuracy@5
93
+ - type: cosine_accuracy@10
94
+ value: 0.8985714285714286
95
+ name: Cosine Accuracy@10
96
+ - type: cosine_precision@1
97
+ value: 0.6842857142857143
98
+ name: Cosine Precision@1
99
+ - type: cosine_precision@3
100
+ value: 0.27095238095238094
101
+ name: Cosine Precision@3
102
+ - type: cosine_precision@5
103
+ value: 0.172
104
+ name: Cosine Precision@5
105
+ - type: cosine_precision@10
106
+ value: 0.08985714285714284
107
+ name: Cosine Precision@10
108
+ - type: cosine_recall@1
109
+ value: 0.6842857142857143
110
+ name: Cosine Recall@1
111
+ - type: cosine_recall@3
112
+ value: 0.8128571428571428
113
+ name: Cosine Recall@3
114
+ - type: cosine_recall@5
115
+ value: 0.86
116
+ name: Cosine Recall@5
117
+ - type: cosine_recall@10
118
+ value: 0.8985714285714286
119
+ name: Cosine Recall@10
120
+ - type: cosine_ndcg@10
121
+ value: 0.7929325221389678
122
+ name: Cosine Ndcg@10
123
+ - type: cosine_mrr@10
124
+ value: 0.7588820861678003
125
+ name: Cosine Mrr@10
126
+ - type: cosine_map@100
127
+ value: 0.7629563080276819
128
+ name: Cosine Map@100
129
+ - task:
130
+ type: information-retrieval
131
+ name: Information Retrieval
132
+ dataset:
133
+ name: dim 512
134
+ type: dim_512
135
+ metrics:
136
+ - type: cosine_accuracy@1
137
+ value: 0.6857142857142857
138
+ name: Cosine Accuracy@1
139
+ - type: cosine_accuracy@3
140
+ value: 0.82
141
+ name: Cosine Accuracy@3
142
+ - type: cosine_accuracy@5
143
+ value: 0.8585714285714285
144
+ name: Cosine Accuracy@5
145
+ - type: cosine_accuracy@10
146
+ value: 0.9057142857142857
147
+ name: Cosine Accuracy@10
148
+ - type: cosine_precision@1
149
+ value: 0.6857142857142857
150
+ name: Cosine Precision@1
151
+ - type: cosine_precision@3
152
+ value: 0.2733333333333333
153
+ name: Cosine Precision@3
154
+ - type: cosine_precision@5
155
+ value: 0.1717142857142857
156
+ name: Cosine Precision@5
157
+ - type: cosine_precision@10
158
+ value: 0.09057142857142857
159
+ name: Cosine Precision@10
160
+ - type: cosine_recall@1
161
+ value: 0.6857142857142857
162
+ name: Cosine Recall@1
163
+ - type: cosine_recall@3
164
+ value: 0.82
165
+ name: Cosine Recall@3
166
+ - type: cosine_recall@5
167
+ value: 0.8585714285714285
168
+ name: Cosine Recall@5
169
+ - type: cosine_recall@10
170
+ value: 0.9057142857142857
171
+ name: Cosine Recall@10
172
+ - type: cosine_ndcg@10
173
+ value: 0.7963845502294126
174
+ name: Cosine Ndcg@10
175
+ - type: cosine_mrr@10
176
+ value: 0.7614115646258502
177
+ name: Cosine Mrr@10
178
+ - type: cosine_map@100
179
+ value: 0.7648837754793252
180
+ name: Cosine Map@100
181
+ - task:
182
+ type: information-retrieval
183
+ name: Information Retrieval
184
+ dataset:
185
+ name: dim 256
186
+ type: dim_256
187
+ metrics:
188
+ - type: cosine_accuracy@1
189
+ value: 0.6771428571428572
190
+ name: Cosine Accuracy@1
191
+ - type: cosine_accuracy@3
192
+ value: 0.8042857142857143
193
+ name: Cosine Accuracy@3
194
+ - type: cosine_accuracy@5
195
+ value: 0.8571428571428571
196
+ name: Cosine Accuracy@5
197
+ - type: cosine_accuracy@10
198
+ value: 0.89
199
+ name: Cosine Accuracy@10
200
+ - type: cosine_precision@1
201
+ value: 0.6771428571428572
202
+ name: Cosine Precision@1
203
+ - type: cosine_precision@3
204
+ value: 0.2680952380952381
205
+ name: Cosine Precision@3
206
+ - type: cosine_precision@5
207
+ value: 0.17142857142857137
208
+ name: Cosine Precision@5
209
+ - type: cosine_precision@10
210
+ value: 0.08899999999999998
211
+ name: Cosine Precision@10
212
+ - type: cosine_recall@1
213
+ value: 0.6771428571428572
214
+ name: Cosine Recall@1
215
+ - type: cosine_recall@3
216
+ value: 0.8042857142857143
217
+ name: Cosine Recall@3
218
+ - type: cosine_recall@5
219
+ value: 0.8571428571428571
220
+ name: Cosine Recall@5
221
+ - type: cosine_recall@10
222
+ value: 0.89
223
+ name: Cosine Recall@10
224
+ - type: cosine_ndcg@10
225
+ value: 0.784627431591255
226
+ name: Cosine Ndcg@10
227
+ - type: cosine_mrr@10
228
+ value: 0.7506218820861676
229
+ name: Cosine Mrr@10
230
+ - type: cosine_map@100
231
+ value: 0.7549970210504993
232
+ name: Cosine Map@100
233
+ - task:
234
+ type: information-retrieval
235
+ name: Information Retrieval
236
+ dataset:
237
+ name: dim 128
238
+ type: dim_128
239
+ metrics:
240
+ - type: cosine_accuracy@1
241
+ value: 0.6614285714285715
242
+ name: Cosine Accuracy@1
243
+ - type: cosine_accuracy@3
244
+ value: 0.7957142857142857
245
+ name: Cosine Accuracy@3
246
+ - type: cosine_accuracy@5
247
+ value: 0.8271428571428572
248
+ name: Cosine Accuracy@5
249
+ - type: cosine_accuracy@10
250
+ value: 0.88
251
+ name: Cosine Accuracy@10
252
+ - type: cosine_precision@1
253
+ value: 0.6614285714285715
254
+ name: Cosine Precision@1
255
+ - type: cosine_precision@3
256
+ value: 0.2652380952380952
257
+ name: Cosine Precision@3
258
+ - type: cosine_precision@5
259
+ value: 0.1654285714285714
260
+ name: Cosine Precision@5
261
+ - type: cosine_precision@10
262
+ value: 0.088
263
+ name: Cosine Precision@10
264
+ - type: cosine_recall@1
265
+ value: 0.6614285714285715
266
+ name: Cosine Recall@1
267
+ - type: cosine_recall@3
268
+ value: 0.7957142857142857
269
+ name: Cosine Recall@3
270
+ - type: cosine_recall@5
271
+ value: 0.8271428571428572
272
+ name: Cosine Recall@5
273
+ - type: cosine_recall@10
274
+ value: 0.88
275
+ name: Cosine Recall@10
276
+ - type: cosine_ndcg@10
277
+ value: 0.7728766261768507
278
+ name: Cosine Ndcg@10
279
+ - type: cosine_mrr@10
280
+ value: 0.7384614512471652
281
+ name: Cosine Mrr@10
282
+ - type: cosine_map@100
283
+ value: 0.74301468254304
284
+ name: Cosine Map@100
285
+ - task:
286
+ type: information-retrieval
287
+ name: Information Retrieval
288
+ dataset:
289
+ name: dim 64
290
+ type: dim_64
291
+ metrics:
292
+ - type: cosine_accuracy@1
293
+ value: 0.6128571428571429
294
+ name: Cosine Accuracy@1
295
+ - type: cosine_accuracy@3
296
+ value: 0.7628571428571429
297
+ name: Cosine Accuracy@3
298
+ - type: cosine_accuracy@5
299
+ value: 0.7957142857142857
300
+ name: Cosine Accuracy@5
301
+ - type: cosine_accuracy@10
302
+ value: 0.8471428571428572
303
+ name: Cosine Accuracy@10
304
+ - type: cosine_precision@1
305
+ value: 0.6128571428571429
306
+ name: Cosine Precision@1
307
+ - type: cosine_precision@3
308
+ value: 0.2542857142857143
309
+ name: Cosine Precision@3
310
+ - type: cosine_precision@5
311
+ value: 0.15914285714285714
312
+ name: Cosine Precision@5
313
+ - type: cosine_precision@10
314
+ value: 0.0847142857142857
315
+ name: Cosine Precision@10
316
+ - type: cosine_recall@1
317
+ value: 0.6128571428571429
318
+ name: Cosine Recall@1
319
+ - type: cosine_recall@3
320
+ value: 0.7628571428571429
321
+ name: Cosine Recall@3
322
+ - type: cosine_recall@5
323
+ value: 0.7957142857142857
324
+ name: Cosine Recall@5
325
+ - type: cosine_recall@10
326
+ value: 0.8471428571428572
327
+ name: Cosine Recall@10
328
+ - type: cosine_ndcg@10
329
+ value: 0.7315764159717033
330
+ name: Cosine Ndcg@10
331
+ - type: cosine_mrr@10
332
+ value: 0.6946094104308389
333
+ name: Cosine Mrr@10
334
+ - type: cosine_map@100
335
+ value: 0.7001749041654559
336
+ name: Cosine Map@100
337
+ ---
338
+
339
+ # BGE base Financial Matryoshka
340
+
341
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
342
+
343
+ ## Model Details
344
+
345
+ ### Model Description
346
+ - **Model Type:** Sentence Transformer
347
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
348
+ - **Maximum Sequence Length:** 512 tokens
349
+ - **Output Dimensionality:** 768 tokens
350
+ - **Similarity Function:** Cosine Similarity
351
+ <!-- - **Training Dataset:** Unknown -->
352
+ - **Language:** en
353
+ - **License:** apache-2.0
354
+
355
+ ### Model Sources
356
+
357
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
358
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
359
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
360
+
361
+ ### Full Model Architecture
362
+
363
+ ```
364
+ SentenceTransformer(
365
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
366
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
367
+ (2): Normalize()
368
+ )
369
+ ```
370
+
371
+ ## Usage
372
+
373
+ ### Direct Usage (Sentence Transformers)
374
+
375
+ First install the Sentence Transformers library:
376
+
377
+ ```bash
378
+ pip install -U sentence-transformers
379
+ ```
380
+
381
+ Then you can load this model and run inference.
382
+ ```python
383
+ from sentence_transformers import SentenceTransformer
384
+
385
+ # Download from the 🤗 Hub
386
+ model = SentenceTransformer("elsayovita/bge-base-financial-matryoshka-testing")
387
+ # Run inference
388
+ sentences = [
389
+ 'Electronic Arts paid cash dividends totaling $210 million during the fiscal year ended March 31, 2023.',
390
+ 'What was the total cash dividend paid by Electronic Arts in the fiscal year ended March 31, 2023?',
391
+ "What was the SRO's accrued amount as a receivable for CAT implementation expenses as of December 31, 2023?",
392
+ ]
393
+ embeddings = model.encode(sentences)
394
+ print(embeddings.shape)
395
+ # [3, 768]
396
+
397
+ # Get the similarity scores for the embeddings
398
+ similarities = model.similarity(embeddings, embeddings)
399
+ print(similarities.shape)
400
+ # [3, 3]
401
+ ```
402
+
403
+ <!--
404
+ ### Direct Usage (Transformers)
405
+
406
+ <details><summary>Click to see the direct usage in Transformers</summary>
407
+
408
+ </details>
409
+ -->
410
+
411
+ <!--
412
+ ### Downstream Usage (Sentence Transformers)
413
+
414
+ You can finetune this model on your own dataset.
415
+
416
+ <details><summary>Click to expand</summary>
417
+
418
+ </details>
419
+ -->
420
+
421
+ <!--
422
+ ### Out-of-Scope Use
423
+
424
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
425
+ -->
426
+
427
+ ## Evaluation
428
+
429
+ ### Metrics
430
+
431
+ #### Information Retrieval
432
+ * Dataset: `dim_768`
433
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
434
+
435
+ | Metric | Value |
436
+ |:--------------------|:----------|
437
+ | cosine_accuracy@1 | 0.6843 |
438
+ | cosine_accuracy@3 | 0.8129 |
439
+ | cosine_accuracy@5 | 0.86 |
440
+ | cosine_accuracy@10 | 0.8986 |
441
+ | cosine_precision@1 | 0.6843 |
442
+ | cosine_precision@3 | 0.271 |
443
+ | cosine_precision@5 | 0.172 |
444
+ | cosine_precision@10 | 0.0899 |
445
+ | cosine_recall@1 | 0.6843 |
446
+ | cosine_recall@3 | 0.8129 |
447
+ | cosine_recall@5 | 0.86 |
448
+ | cosine_recall@10 | 0.8986 |
449
+ | cosine_ndcg@10 | 0.7929 |
450
+ | cosine_mrr@10 | 0.7589 |
451
+ | **cosine_map@100** | **0.763** |
452
+
453
+ #### Information Retrieval
454
+ * Dataset: `dim_512`
455
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
456
+
457
+ | Metric | Value |
458
+ |:--------------------|:-----------|
459
+ | cosine_accuracy@1 | 0.6857 |
460
+ | cosine_accuracy@3 | 0.82 |
461
+ | cosine_accuracy@5 | 0.8586 |
462
+ | cosine_accuracy@10 | 0.9057 |
463
+ | cosine_precision@1 | 0.6857 |
464
+ | cosine_precision@3 | 0.2733 |
465
+ | cosine_precision@5 | 0.1717 |
466
+ | cosine_precision@10 | 0.0906 |
467
+ | cosine_recall@1 | 0.6857 |
468
+ | cosine_recall@3 | 0.82 |
469
+ | cosine_recall@5 | 0.8586 |
470
+ | cosine_recall@10 | 0.9057 |
471
+ | cosine_ndcg@10 | 0.7964 |
472
+ | cosine_mrr@10 | 0.7614 |
473
+ | **cosine_map@100** | **0.7649** |
474
+
475
+ #### Information Retrieval
476
+ * Dataset: `dim_256`
477
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
478
+
479
+ | Metric | Value |
480
+ |:--------------------|:----------|
481
+ | cosine_accuracy@1 | 0.6771 |
482
+ | cosine_accuracy@3 | 0.8043 |
483
+ | cosine_accuracy@5 | 0.8571 |
484
+ | cosine_accuracy@10 | 0.89 |
485
+ | cosine_precision@1 | 0.6771 |
486
+ | cosine_precision@3 | 0.2681 |
487
+ | cosine_precision@5 | 0.1714 |
488
+ | cosine_precision@10 | 0.089 |
489
+ | cosine_recall@1 | 0.6771 |
490
+ | cosine_recall@3 | 0.8043 |
491
+ | cosine_recall@5 | 0.8571 |
492
+ | cosine_recall@10 | 0.89 |
493
+ | cosine_ndcg@10 | 0.7846 |
494
+ | cosine_mrr@10 | 0.7506 |
495
+ | **cosine_map@100** | **0.755** |
496
+
497
+ #### Information Retrieval
498
+ * Dataset: `dim_128`
499
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
500
+
501
+ | Metric | Value |
502
+ |:--------------------|:----------|
503
+ | cosine_accuracy@1 | 0.6614 |
504
+ | cosine_accuracy@3 | 0.7957 |
505
+ | cosine_accuracy@5 | 0.8271 |
506
+ | cosine_accuracy@10 | 0.88 |
507
+ | cosine_precision@1 | 0.6614 |
508
+ | cosine_precision@3 | 0.2652 |
509
+ | cosine_precision@5 | 0.1654 |
510
+ | cosine_precision@10 | 0.088 |
511
+ | cosine_recall@1 | 0.6614 |
512
+ | cosine_recall@3 | 0.7957 |
513
+ | cosine_recall@5 | 0.8271 |
514
+ | cosine_recall@10 | 0.88 |
515
+ | cosine_ndcg@10 | 0.7729 |
516
+ | cosine_mrr@10 | 0.7385 |
517
+ | **cosine_map@100** | **0.743** |
518
+
519
+ #### Information Retrieval
520
+ * Dataset: `dim_64`
521
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
522
+
523
+ | Metric | Value |
524
+ |:--------------------|:-----------|
525
+ | cosine_accuracy@1 | 0.6129 |
526
+ | cosine_accuracy@3 | 0.7629 |
527
+ | cosine_accuracy@5 | 0.7957 |
528
+ | cosine_accuracy@10 | 0.8471 |
529
+ | cosine_precision@1 | 0.6129 |
530
+ | cosine_precision@3 | 0.2543 |
531
+ | cosine_precision@5 | 0.1591 |
532
+ | cosine_precision@10 | 0.0847 |
533
+ | cosine_recall@1 | 0.6129 |
534
+ | cosine_recall@3 | 0.7629 |
535
+ | cosine_recall@5 | 0.7957 |
536
+ | cosine_recall@10 | 0.8471 |
537
+ | cosine_ndcg@10 | 0.7316 |
538
+ | cosine_mrr@10 | 0.6946 |
539
+ | **cosine_map@100** | **0.7002** |
540
+
541
+ <!--
542
+ ## Bias, Risks and Limitations
543
+
544
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
545
+ -->
546
+
547
+ <!--
548
+ ### Recommendations
549
+
550
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
551
+ -->
552
+
553
+ ## Training Details
554
+
555
+ ### Training Dataset
556
+
557
+ #### Unnamed Dataset
558
+
559
+
560
+ * Size: 6,300 training samples
561
+ * Columns: <code>positive</code> and <code>anchor</code>
562
+ * Approximate statistics based on the first 1000 samples:
563
+ | | positive | anchor |
564
+ |:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
565
+ | type | string | string |
566
+ | details | <ul><li>min: 6 tokens</li><li>mean: 46.86 tokens</li><li>max: 252 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 20.5 tokens</li><li>max: 51 tokens</li></ul> |
567
+ * Samples:
568
+ | positive | anchor |
569
+ |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------|
570
+ | <code>For the year ended December 31, 2023, the average balance for savings and transaction accounts was $86,102 and the interest expense for these accounts was $3,357.</code> | <code>What was the average balance and interest expense for savings and transaction accounts in the year 2023?</code> |
571
+ | <code>Limits are used at various levels and types to manage the size of liquidity exposures, relative to acceptable risk levels according the the organization's liquidity risk tolerance.</code> | <code>What is the purpose of the liquidity risk limits used by the organization?</code> |
572
+ | <code>Value-Based Care refers to the goal of incentivizing healthcare providers to simultaneously increase quality while lowering the cost of care for patients.</code> | <code>What is the primary goal of value-based care according to the company?</code> |
573
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
574
+ ```json
575
+ {
576
+ "loss": "MultipleNegativesRankingLoss",
577
+ "matryoshka_dims": [
578
+ 768,
579
+ 512,
580
+ 256,
581
+ 128,
582
+ 64
583
+ ],
584
+ "matryoshka_weights": [
585
+ 1,
586
+ 1,
587
+ 1,
588
+ 1,
589
+ 1
590
+ ],
591
+ "n_dims_per_step": -1
592
+ }
593
+ ```
594
+
595
+ ### Training Hyperparameters
596
+ #### Non-Default Hyperparameters
597
+
598
+ - `eval_strategy`: epoch
599
+ - `per_device_train_batch_size`: 32
600
+ - `per_device_eval_batch_size`: 16
601
+ - `gradient_accumulation_steps`: 16
602
+ - `learning_rate`: 2e-05
603
+ - `num_train_epochs`: 2
604
+ - `lr_scheduler_type`: cosine
605
+ - `warmup_ratio`: 0.1
606
+ - `bf16`: True
607
+ - `tf32`: False
608
+ - `load_best_model_at_end`: True
609
+ - `optim`: adamw_torch_fused
610
+ - `batch_sampler`: no_duplicates
611
+
612
+ #### All Hyperparameters
613
+ <details><summary>Click to expand</summary>
614
+
615
+ - `overwrite_output_dir`: False
616
+ - `do_predict`: False
617
+ - `eval_strategy`: epoch
618
+ - `prediction_loss_only`: True
619
+ - `per_device_train_batch_size`: 32
620
+ - `per_device_eval_batch_size`: 16
621
+ - `per_gpu_train_batch_size`: None
622
+ - `per_gpu_eval_batch_size`: None
623
+ - `gradient_accumulation_steps`: 16
624
+ - `eval_accumulation_steps`: None
625
+ - `learning_rate`: 2e-05
626
+ - `weight_decay`: 0.0
627
+ - `adam_beta1`: 0.9
628
+ - `adam_beta2`: 0.999
629
+ - `adam_epsilon`: 1e-08
630
+ - `max_grad_norm`: 1.0
631
+ - `num_train_epochs`: 2
632
+ - `max_steps`: -1
633
+ - `lr_scheduler_type`: cosine
634
+ - `lr_scheduler_kwargs`: {}
635
+ - `warmup_ratio`: 0.1
636
+ - `warmup_steps`: 0
637
+ - `log_level`: passive
638
+ - `log_level_replica`: warning
639
+ - `log_on_each_node`: True
640
+ - `logging_nan_inf_filter`: True
641
+ - `save_safetensors`: True
642
+ - `save_on_each_node`: False
643
+ - `save_only_model`: False
644
+ - `restore_callback_states_from_checkpoint`: False
645
+ - `no_cuda`: False
646
+ - `use_cpu`: False
647
+ - `use_mps_device`: False
648
+ - `seed`: 42
649
+ - `data_seed`: None
650
+ - `jit_mode_eval`: False
651
+ - `use_ipex`: False
652
+ - `bf16`: True
653
+ - `fp16`: False
654
+ - `fp16_opt_level`: O1
655
+ - `half_precision_backend`: auto
656
+ - `bf16_full_eval`: False
657
+ - `fp16_full_eval`: False
658
+ - `tf32`: False
659
+ - `local_rank`: 0
660
+ - `ddp_backend`: None
661
+ - `tpu_num_cores`: None
662
+ - `tpu_metrics_debug`: False
663
+ - `debug`: []
664
+ - `dataloader_drop_last`: False
665
+ - `dataloader_num_workers`: 0
666
+ - `dataloader_prefetch_factor`: None
667
+ - `past_index`: -1
668
+ - `disable_tqdm`: False
669
+ - `remove_unused_columns`: True
670
+ - `label_names`: None
671
+ - `load_best_model_at_end`: True
672
+ - `ignore_data_skip`: False
673
+ - `fsdp`: []
674
+ - `fsdp_min_num_params`: 0
675
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
676
+ - `fsdp_transformer_layer_cls_to_wrap`: None
677
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
678
+ - `deepspeed`: None
679
+ - `label_smoothing_factor`: 0.0
680
+ - `optim`: adamw_torch_fused
681
+ - `optim_args`: None
682
+ - `adafactor`: False
683
+ - `group_by_length`: False
684
+ - `length_column_name`: length
685
+ - `ddp_find_unused_parameters`: None
686
+ - `ddp_bucket_cap_mb`: None
687
+ - `ddp_broadcast_buffers`: False
688
+ - `dataloader_pin_memory`: True
689
+ - `dataloader_persistent_workers`: False
690
+ - `skip_memory_metrics`: True
691
+ - `use_legacy_prediction_loop`: False
692
+ - `push_to_hub`: False
693
+ - `resume_from_checkpoint`: None
694
+ - `hub_model_id`: None
695
+ - `hub_strategy`: every_save
696
+ - `hub_private_repo`: False
697
+ - `hub_always_push`: False
698
+ - `gradient_checkpointing`: False
699
+ - `gradient_checkpointing_kwargs`: None
700
+ - `include_inputs_for_metrics`: False
701
+ - `eval_do_concat_batches`: True
702
+ - `fp16_backend`: auto
703
+ - `push_to_hub_model_id`: None
704
+ - `push_to_hub_organization`: None
705
+ - `mp_parameters`:
706
+ - `auto_find_batch_size`: False
707
+ - `full_determinism`: False
708
+ - `torchdynamo`: None
709
+ - `ray_scope`: last
710
+ - `ddp_timeout`: 1800
711
+ - `torch_compile`: False
712
+ - `torch_compile_backend`: None
713
+ - `torch_compile_mode`: None
714
+ - `dispatch_batches`: None
715
+ - `split_batches`: None
716
+ - `include_tokens_per_second`: False
717
+ - `include_num_input_tokens_seen`: False
718
+ - `neftune_noise_alpha`: None
719
+ - `optim_target_modules`: None
720
+ - `batch_eval_metrics`: False
721
+ - `eval_on_start`: False
722
+ - `batch_sampler`: no_duplicates
723
+ - `multi_dataset_batch_sampler`: proportional
724
+
725
+ </details>
726
+
727
+ ### Training Logs
728
+ | Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
729
+ |:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
730
+ | 0.8122 | 10 | 1.4746 | - | - | - | - | - |
731
+ | 0.9746 | 12 | - | 0.7378 | 0.7470 | 0.7589 | 0.6941 | 0.7563 |
732
+ | 1.6244 | 20 | 0.6694 | - | - | - | - | - |
733
+ | **1.9492** | **24** | **-** | **0.743** | **0.755** | **0.7649** | **0.7002** | **0.763** |
734
+
735
+ * The bold row denotes the saved checkpoint.
736
+
737
+ ### Framework Versions
738
+ - Python: 3.10.12
739
+ - Sentence Transformers: 3.0.1
740
+ - Transformers: 4.42.4
741
+ - PyTorch: 2.4.0+cu121
742
+ - Accelerate: 0.32.1
743
+ - Datasets: 2.21.0
744
+ - Tokenizers: 0.19.1
745
+
746
+ ## Citation
747
+
748
+ ### BibTeX
749
+
750
+ #### Sentence Transformers
751
+ ```bibtex
752
+ @inproceedings{reimers-2019-sentence-bert,
753
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
754
+ author = "Reimers, Nils and Gurevych, Iryna",
755
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
756
+ month = "11",
757
+ year = "2019",
758
+ publisher = "Association for Computational Linguistics",
759
+ url = "https://arxiv.org/abs/1908.10084",
760
+ }
761
+ ```
762
+
763
+ #### MatryoshkaLoss
764
+ ```bibtex
765
+ @misc{kusupati2024matryoshka,
766
+ title={Matryoshka Representation Learning},
767
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
768
+ year={2024},
769
+ eprint={2205.13147},
770
+ archivePrefix={arXiv},
771
+ primaryClass={cs.LG}
772
+ }
773
+ ```
774
+
775
+ #### MultipleNegativesRankingLoss
776
+ ```bibtex
777
+ @misc{henderson2017efficient,
778
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
779
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
780
+ year={2017},
781
+ eprint={1705.00652},
782
+ archivePrefix={arXiv},
783
+ primaryClass={cs.CL}
784
+ }
785
+ ```
786
+
787
+ <!--
788
+ ## Glossary
789
+
790
+ *Clearly define terms in order to be accessible across audiences.*
791
+ -->
792
+
793
+ <!--
794
+ ## Model Card Authors
795
+
796
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
797
+ -->
798
+
799
+ <!--
800
+ ## Model Card Contact
801
+
802
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
803
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.42.4",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.4",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:64e95119c7856c50b967dbd07dd458726fe0d01d49b5689025300fdd0b01cb74
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff