--- license: cc-by-nc-4.0 tags: - merge - mergekit - lazymergekit - louisbrulenaudet/Pearl-7B-slerp - mlabonne/NeuralBeagle14-7B base_model: - louisbrulenaudet/Pearl-7B-slerp - mlabonne/NeuralBeagle14-7B --- # NeuralPearlBeagle NeuralPearlBeagle is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [louisbrulenaudet/Pearl-7B-slerp](https://huggingface.co./louisbrulenaudet/Pearl-7B-slerp) * [mlabonne/NeuralBeagle14-7B](https://huggingface.co./mlabonne/NeuralBeagle14-7B) ## 🧩 Configuration ```yaml models: - model: louisbrulenaudet/Pearl-7B-slerp parameters: density: 0.6 weight: 0.5 - model: mlabonne/NeuralBeagle14-7B parameters: density: 0.8 weight: 0.8 merge_method: ties base_model: mlabonne/NeuralBeagle14-7B parameters: normalize: true int8_mask: true dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "eldogbbhed/NeuralPearlBeagle" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```