--- license: cc-by-nc-4.0 tags: - merge - mergekit - lazymergekit - abideen/MonarchCoder-7B - eldogbbhed/NeuralPearlBeagle base_model: - abideen/MonarchCoder-7B - eldogbbhed/NeuralPearlBeagle model-index: - name: NeuralMonarchCoderPearlBeagle results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 68.52 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=eldogbbhed/NeuralMonarchCoderPearlBeagle name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 87.22 name: normalized accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=eldogbbhed/NeuralMonarchCoderPearlBeagle name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.53 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=eldogbbhed/NeuralMonarchCoderPearlBeagle name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 61.19 source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=eldogbbhed/NeuralMonarchCoderPearlBeagle name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 80.51 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=eldogbbhed/NeuralMonarchCoderPearlBeagle name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 67.02 name: accuracy source: url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=eldogbbhed/NeuralMonarchCoderPearlBeagle name: Open LLM Leaderboard ---
# NeuralMonarchCoderPearlBeagle NeuralMonarchCoderPearlBeagle is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [abideen/MonarchCoder-7B](https://huggingface.co./abideen/MonarchCoder-7B) * [eldogbbhed/NeuralPearlBeagle](https://huggingface.co./eldogbbhed/NeuralPearlBeagle) ### Goals This is a TIES merge, formed from MonarchCoder-7b (A merge of Alpha Monarch and TessCoder) and NeuralPearlBeagle(which is a merge of mlabonne's NeuralBeagle14-7b and Pearl-7B-Slerp). It is a somewhat haphazard experiment to see if we can merge more math and coding capabilities into the already outstanding NeuralBeagle14-7b and still maintain the same positive chat abilities. If you find this or my other merges useful, please consider sending a bit of BTC so I don't have to use Google Colab :D BTC: bc1q8lc4mzdtdyz7fx44vaw3jn8qg6w4c3ypfxpdrv ETH/POLYGON: 0x102a6fd187db8441d2cbead33ac70e87f382f114 ## 🧩 Configuration ```yaml models: - model: abideen/MonarchCoder-7B parameters: density: 0.6 weight: 0.5 - model: eldogbbhed/NeuralPearlBeagle parameters: density: 0.8 weight: 0.8 merge_method: ties base_model: eldogbbhed/NeuralPearlBeagle parameters: normalize: true int8_mask: true dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "eldogbbhed/NeuralMonarchCoderPearlBeagle" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_eldogbbhed__NeuralMonarchCoderPearlBeagle) | Metric |Value| |---------------------------------|----:| |Avg. |71.50| |AI2 Reasoning Challenge (25-Shot)|68.52| |HellaSwag (10-Shot) |87.22| |MMLU (5-Shot) |64.53| |TruthfulQA (0-shot) |61.19| |Winogrande (5-shot) |80.51| |GSM8k (5-shot) |67.02|