File size: 2,407 Bytes
b20633c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0186481
b20633c
 
 
 
 
 
 
 
 
 
 
 
fde7840
 
 
81aa1a9
05b0f2e
28fe58e
 
 
 
25dfd91
 
81aa1a9
 
 
 
 
 
 
1acc03d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
license: cc-by-nc-4.0
base_model: KT-AI/midm-bitext-S-7B-inst-v1
tags:
- generated_from_trainer
model-index:
- name: lora-midm-7b-nsmc-understanding
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# lora-midm-7b-nsmc-understanding

This model is a fine-tuned version of [KT-AI/midm-bitext-S-7B-inst-v1](https://huggingface.co./KT-AI/midm-bitext-S-7B-inst-v1) on an unknown dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 1500
- mixed_precision_training: Native AMP

### Training results



### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0


### test accuracy
kt-ai-midm
- Confusion Matrix:
||Predicted 0|Predicted 1|
|:---|---:|---:|
|Actual 0|443|49|
|Actual 1|46|462|
**Accuracy: 0.905**

llama-2
- Confusion Matrix:
||Predicted 0|Predicted 1|
|:---|---:|---:|
|Actual 0|450|42|
|Actual 1|56|452|
**Accuracy: 0.902**

### ์ˆ˜์ •๋ถ€๋ถ„
- ๋ฐ์ดํ„ฐ๋กœ๋”ฉ
  - prepare_sample_text() : ์‹œ์Šคํ…œ ๋ฉ”์‹œ์ง€ ๋ณ€๊ฒฝ ๋ฐ ํ”„๋กฌํ”„ํŠธ ํฌ๋ฉง ์„ค์ •
  - create_datasets() : train ๋ฐ์ดํ„ฐ ์ƒ์œ„ 2000๊ฐœ ์„ ํƒ
- ๋ฏธ์„ธํŠœ๋‹์šฉ ๋ชจ๋ธ ๋กœ๋”ฉ
  - script_args : ์‚ฌ์šฉ ๋ฐ์ดํ„ฐ๋ช… nsmc ์„ค์ • ๋ฐ ๋ชจ๋ธ๋ช… KT-AI/midm-bitext-S-7B-inst-v1 ์„ค์ •
  - max_steps : ์ตœ๋Œ€ ํ›ˆ๋ จ ๋‹จ๊ณ„ 1500 ์„ค์ • (300->1000->1500 ์ˆ˜์ •๊ฒฐ๊ณผ ๋†’์€ ์ •ํ™•๋„)
  - save : ์ฒดํฌํฌ์ธํŠธ ์„ธ์ด๋ธŒ๋ฅผ ์œ„ํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ ์ง€์ •
- ํ—ˆ๊น…ํŽ˜์ด์Šค push_to_hub ๋กœ push
- ์ถ”๋ก ํ…Œ์ŠคํŠธ
  - ํ”„๋กฌํ”„ํŠธ ํ…œํ”Œ๋ฆฟ ์ˆ˜์ • ๋ฐ ์‹œ์Šคํ…œ ๋ฉ”์‹œ์ง€ ๋ณ€๊ฒฝ
  - valid_dataset : test ๋ฐ์ดํ„ฐ ์ƒ์œ„ 1000๊ฐœ ์„ ํƒ
- ๋ฏธ์„ธํŠœ๋‹๋œ ๋ชจ๋ธ ๋กœ๋”ฉ ํ›„ ํ…Œ์ŠคํŠธ
  - eval_dic : valid_dataset ํ•™์Šตํ•œ ๊ฒฐ๊ณผ ์ถœ๋ ฅ
- ์ •ํ™•๋„
  - valid_dataset ๊ณผ ๋ชจ๋ธ ํ›ˆ๋ จ ๊ฒฐ๊ณผ true_labels ๋ฅผ ์ด์šฉํ•œ ์ •ํ™•๋„ ๋ถ„์„