--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model_index: name: wav2vec2-lg-xlsr-en-speech-emotion-recognition --- # Speech Emotion Recognition By Fine-Tuning Wav2Vec 2.0 The model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-english](https://huggingface.co./jonatasgrosman/wav2vec2-large-xlsr-53-english) for a Speech Emotion Recognition (SER) task. The dataset used to fine-tune the original pre-trained model is the [RAVDESS dataset](https://zenodo.org/record/1188976#.YO6yI-gzaUk). This dataset provides 1440 samples of recordings from actors performing on 8 different emotions in English, which are: ```python emotions = ['angry', 'calm', 'disgust', 'fearful', 'happy', 'neutral', 'sad', 'surprised'] ``` It achieves the following results on the evaluation set: - Loss: 0.5023 - Accuracy: 0.8223 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0752 | 0.21 | 30 | 2.0505 | 0.1359 | | 2.0119 | 0.42 | 60 | 1.9340 | 0.2474 | | 1.8073 | 0.63 | 90 | 1.5169 | 0.3902 | | 1.5418 | 0.84 | 120 | 1.2373 | 0.5610 | | 1.1432 | 1.05 | 150 | 1.1579 | 0.5610 | | 0.9645 | 1.26 | 180 | 0.9610 | 0.6167 | | 0.8811 | 1.47 | 210 | 0.8063 | 0.7178 | | 0.8756 | 1.68 | 240 | 0.7379 | 0.7352 | | 0.8208 | 1.89 | 270 | 0.6839 | 0.7596 | | 0.7118 | 2.1 | 300 | 0.6664 | 0.7735 | | 0.4261 | 2.31 | 330 | 0.6058 | 0.8014 | | 0.4394 | 2.52 | 360 | 0.5754 | 0.8223 | | 0.4581 | 2.72 | 390 | 0.4719 | 0.8467 | | 0.3967 | 2.93 | 420 | 0.5023 | 0.8223 | ## Citation ```bibtex @misc {enrique_hernández_calabrés_2024, author = { {Enrique Hernández Calabrés} }, title = { wav2vec2-lg-xlsr-en-speech-emotion-recognition (Revision 17cf17c) }, year = 2024, url = { https://huggingface.co./ehcalabres/wav2vec2-lg-xlsr-en-speech-emotion-recognition }, doi = { 10.57967/hf/2045 }, publisher = { Hugging Face } } ``` ## Contact Any doubt, contact me on [Twitter](https://twitter.com/ehcalabres). ### Framework versions - Transformers 4.8.2 - Pytorch 1.9.0+cu102 - Datasets 1.9.0 - Tokenizers 0.10.3