End of training
Browse files
README.md
CHANGED
@@ -5,22 +5,24 @@ tags:
|
|
5 |
- generated_from_trainer
|
6 |
metrics:
|
7 |
- rouge
|
|
|
8 |
model-index:
|
9 |
-
- name: mT5-TextSimp-LT-
|
10 |
results: []
|
11 |
---
|
12 |
|
13 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
should probably proofread and complete it, then remove this comment. -->
|
15 |
|
16 |
-
# mT5-TextSimp-LT-
|
17 |
|
18 |
This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the None dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
- Loss: 0.1611
|
21 |
-
- Rouge1: 0.
|
22 |
-
- Rouge2: 0.
|
23 |
-
- Rougel: 0.
|
|
|
24 |
- Gen Len: 39.0358
|
25 |
|
26 |
## Model description
|
@@ -51,24 +53,24 @@ The following hyperparameters were used during training:
|
|
51 |
|
52 |
### Training results
|
53 |
|
54 |
-
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Gen Len |
|
55 |
-
|
56 |
-
| 36.6446 | 0.48 | 200 | 31.2765 | 0.0004 | 0.0 | 0.0004 | 512.0 |
|
57 |
-
| 11.5223 | 0.96 | 400 | 6.7786 | 0.
|
58 |
-
| 2.2686 | 1.44 | 600 | 0.6729 | 0.
|
59 |
-
| 0.7009 | 1.91 | 800 | 0.6529 | 0.0029 | 0.0 | 0.0027 | 41.401 |
|
60 |
-
| 0.6213 | 2.39 | 1000 | 0.5630 | 0.
|
61 |
-
| 0.6435 | 2.87 | 1200 | 0.4697 | 0.
|
62 |
-
| 0.4154 | 3.35 | 1400 | 10.4655 | 0.
|
63 |
-
| 0.6289 | 3.83 | 1600 | 1.9257 | 0.
|
64 |
-
| 3.5542 | 4.31 | 1800 | 0.8459 | 0.
|
65 |
-
| 8.1736 | 4.78 | 2000 | 7.2350 | 0.
|
66 |
-
| 2.3987 | 5.26 | 2200 | 0.8361 | 0.
|
67 |
-
| 0.9853 | 5.74 | 2400 | 0.4219 | 0.
|
68 |
-
| 0.3575 | 6.22 | 2600 | 0.3516 | 0.
|
69 |
-
| 0.4497 | 6.7 | 2800 | 0.2597 | 0.
|
70 |
-
| 0.2582 | 7.18 | 3000 | 0.1583 | 0.
|
71 |
-
| 0.2629 | 7.66 | 3200 | 0.1611 | 0.
|
72 |
|
73 |
|
74 |
### Framework versions
|
|
|
5 |
- generated_from_trainer
|
6 |
metrics:
|
7 |
- rouge
|
8 |
+
- sacrebleu
|
9 |
model-index:
|
10 |
+
- name: mT5-TextSimp-LT-BatchSize4-lr5e-5
|
11 |
results: []
|
12 |
---
|
13 |
|
14 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
should probably proofread and complete it, then remove this comment. -->
|
16 |
|
17 |
+
# mT5-TextSimp-LT-BatchSize4-lr5e-5
|
18 |
|
19 |
This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the None dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
- Loss: 0.1611
|
22 |
+
- Rouge1: 0.46
|
23 |
+
- Rouge2: 0.2767
|
24 |
+
- Rougel: 0.4464
|
25 |
+
- Sacrebleu: 23.2936
|
26 |
- Gen Len: 39.0358
|
27 |
|
28 |
## Model description
|
|
|
53 |
|
54 |
### Training results
|
55 |
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Sacrebleu | Gen Len |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------:|
|
58 |
+
| 36.6446 | 0.48 | 200 | 31.2765 | 0.0004 | 0.0 | 0.0004 | 0.0003 | 512.0 |
|
59 |
+
| 11.5223 | 0.96 | 400 | 6.7786 | 0.0031 | 0.0 | 0.0031 | 0.0045 | 89.2816 |
|
60 |
+
| 2.2686 | 1.44 | 600 | 0.6729 | 0.0054 | 0.0 | 0.0053 | 0.0196 | 39.0501 |
|
61 |
+
| 0.7009 | 1.91 | 800 | 0.6529 | 0.0029 | 0.0 | 0.0027 | 0.0424 | 41.401 |
|
62 |
+
| 0.6213 | 2.39 | 1000 | 0.5630 | 0.0058 | 0.0002 | 0.0056 | 0.0201 | 39.0334 |
|
63 |
+
| 0.6435 | 2.87 | 1200 | 0.4697 | 0.0688 | 0.0084 | 0.0608 | 0.1156 | 39.0453 |
|
64 |
+
| 0.4154 | 3.35 | 1400 | 10.4655 | 0.2098 | 0.1219 | 0.2011 | 0.671 | 350.0334 |
|
65 |
+
| 0.6289 | 3.83 | 1600 | 1.9257 | 0.3176 | 0.1945 | 0.3072 | 3.6031 | 138.7494 |
|
66 |
+
| 3.5542 | 4.31 | 1800 | 0.8459 | 0.373 | 0.2029 | 0.3615 | 16.8305 | 59.8568 |
|
67 |
+
| 8.1736 | 4.78 | 2000 | 7.2350 | 0.3147 | 0.1815 | 0.3033 | 7.3572 | 289.1432 |
|
68 |
+
| 2.3987 | 5.26 | 2200 | 0.8361 | 0.3616 | 0.1903 | 0.3501 | 16.2229 | 61.0668 |
|
69 |
+
| 0.9853 | 5.74 | 2400 | 0.4219 | 0.3635 | 0.2004 | 0.3515 | 15.2744 | 46.494 |
|
70 |
+
| 0.3575 | 6.22 | 2600 | 0.3516 | 0.3796 | 0.2121 | 0.3687 | 13.6464 | 46.1623 |
|
71 |
+
| 0.4497 | 6.7 | 2800 | 0.2597 | 0.4392 | 0.2698 | 0.4263 | 18.9423 | 42.2697 |
|
72 |
+
| 0.2582 | 7.18 | 3000 | 0.1583 | 0.4442 | 0.2579 | 0.431 | 21.5533 | 38.1671 |
|
73 |
+
| 0.2629 | 7.66 | 3200 | 0.1611 | 0.46 | 0.2767 | 0.4464 | 23.2936 | 39.0358 |
|
74 |
|
75 |
|
76 |
### Framework versions
|