--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer base_model: sentence-transformers/all-MiniLM-L12-v2 metrics: - accuracy widget: - text: Could you provide the average temperature, annual rainfall in Paris? - text: Can you provide a summary of the key points discussed about urban development? - text: Compare ces deux documents - text: What are the steps required to apply for a passport? - text: What is the basic definition of seismic design? pipeline_tag: text-classification inference: true model-index: - name: SetFit with sentence-transformers/all-MiniLM-L12-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.7333333333333333 name: Accuracy --- # SetFit with sentence-transformers/all-MiniLM-L12-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co./sentence-transformers/all-MiniLM-L12-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co./sentence-transformers/all-MiniLM-L12-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 128 tokens - **Number of Classes:** 5 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co./blog/setfit) ### Model Labels | Label | Examples | |:-----------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | sub_queries | | | summary | | | exchange | | | simple_questions | | | compare | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.7333 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("egis-group/router_mini_lm_l6") # Run inference preds = model("Compare ces deux documents") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 3 | 13.4636 | 48 | | Label | Training Sample Count | |:---------|:----------------------| | negative | 0 | | positive | 0 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (4, 4) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:--------:|:-------------:|:---------------:| | 0.0003 | 1 | 0.3239 | - | | 0.0152 | 50 | 0.3443 | - | | 0.0304 | 100 | 0.2282 | - | | 0.0456 | 150 | 0.2576 | - | | 0.0608 | 200 | 0.2587 | - | | 0.0760 | 250 | 0.1747 | - | | 0.0912 | 300 | 0.1916 | - | | 0.1064 | 350 | 0.1638 | - | | 0.1216 | 400 | 0.1459 | - | | 0.1368 | 450 | 0.1322 | - | | 0.1520 | 500 | 0.038 | - | | 0.1672 | 550 | 0.0636 | - | | 0.1824 | 600 | 0.0613 | - | | 0.1976 | 650 | 0.0322 | - | | 0.2128 | 700 | 0.0159 | - | | 0.2280 | 750 | 0.0029 | - | | 0.2432 | 800 | 0.0012 | - | | 0.2584 | 850 | 0.0019 | - | | 0.2736 | 900 | 0.0025 | - | | 0.2888 | 950 | 0.0028 | - | | 0.3040 | 1000 | 0.001 | - | | 0.3192 | 1050 | 0.0014 | - | | 0.3344 | 1100 | 0.0007 | - | | 0.3497 | 1150 | 0.001 | - | | 0.3649 | 1200 | 0.0014 | - | | 0.3801 | 1250 | 0.0003 | - | | 0.3953 | 1300 | 0.0005 | - | | 0.4105 | 1350 | 0.0003 | - | | 0.4257 | 1400 | 0.0004 | - | | 0.4409 | 1450 | 0.0003 | - | | 0.4561 | 1500 | 0.0004 | - | | 0.4713 | 1550 | 0.0003 | - | | 0.4865 | 1600 | 0.0002 | - | | 0.5017 | 1650 | 0.0004 | - | | 0.5169 | 1700 | 0.0003 | - | | 0.5321 | 1750 | 0.0003 | - | | 0.5473 | 1800 | 0.0004 | - | | 0.5625 | 1850 | 0.0002 | - | | 0.5777 | 1900 | 0.0001 | - | | 0.5929 | 1950 | 0.0001 | - | | 0.6081 | 2000 | 0.0003 | - | | 0.6233 | 2050 | 0.0002 | - | | 0.6385 | 2100 | 0.0001 | - | | 0.6537 | 2150 | 0.0002 | - | | 0.6689 | 2200 | 0.0002 | - | | 0.6841 | 2250 | 0.0001 | - | | 0.6993 | 2300 | 0.0002 | - | | 0.7145 | 2350 | 0.0003 | - | | 0.7297 | 2400 | 0.0002 | - | | 0.7449 | 2450 | 0.0002 | - | | 0.7601 | 2500 | 0.0001 | - | | 0.7753 | 2550 | 0.0002 | - | | 0.7905 | 2600 | 0.0001 | - | | 0.8057 | 2650 | 0.0001 | - | | 0.8209 | 2700 | 0.0001 | - | | 0.8361 | 2750 | 0.0001 | - | | 0.8513 | 2800 | 0.0001 | - | | 0.8665 | 2850 | 0.0001 | - | | 0.8817 | 2900 | 0.0001 | - | | 0.8969 | 2950 | 0.0001 | - | | 0.9121 | 3000 | 0.0001 | - | | 0.9273 | 3050 | 0.0001 | - | | 0.9425 | 3100 | 0.0001 | - | | 0.9577 | 3150 | 0.0001 | - | | 0.9729 | 3200 | 0.0001 | - | | 0.9881 | 3250 | 0.0001 | - | | 1.0 | 3289 | - | 0.0982 | | 1.0033 | 3300 | 0.0001 | - | | 1.0185 | 3350 | 0.0001 | - | | 1.0337 | 3400 | 0.0001 | - | | 1.0490 | 3450 | 0.0001 | - | | 1.0642 | 3500 | 0.0001 | - | | 1.0794 | 3550 | 0.0249 | - | | 1.0946 | 3600 | 0.0002 | - | | 1.1098 | 3650 | 0.0001 | - | | 1.1250 | 3700 | 0.0001 | - | | 1.1402 | 3750 | 0.0001 | - | | 1.1554 | 3800 | 0.0001 | - | | 1.1706 | 3850 | 0.0001 | - | | 1.1858 | 3900 | 0.0001 | - | | 1.2010 | 3950 | 0.0001 | - | | 1.2162 | 4000 | 0.0001 | - | | 1.2314 | 4050 | 0.0 | - | | 1.2466 | 4100 | 0.0001 | - | | 1.2618 | 4150 | 0.0 | - | | 1.2770 | 4200 | 0.0001 | - | | 1.2922 | 4250 | 0.0 | - | | 1.3074 | 4300 | 0.0001 | - | | 1.3226 | 4350 | 0.0001 | - | | 1.3378 | 4400 | 0.0001 | - | | 1.3530 | 4450 | 0.0001 | - | | 1.3682 | 4500 | 0.0001 | - | | 1.3834 | 4550 | 0.0001 | - | | 1.3986 | 4600 | 0.0001 | - | | 1.4138 | 4650 | 0.0001 | - | | 1.4290 | 4700 | 0.0001 | - | | 1.4442 | 4750 | 0.0001 | - | | 1.4594 | 4800 | 0.0001 | - | | 1.4746 | 4850 | 0.0001 | - | | 1.4898 | 4900 | 0.0 | - | | 1.5050 | 4950 | 0.0 | - | | 1.5202 | 5000 | 0.0 | - | | 1.5354 | 5050 | 0.0 | - | | 1.5506 | 5100 | 0.0 | - | | 1.5658 | 5150 | 0.0001 | - | | 1.5810 | 5200 | 0.0001 | - | | 1.5962 | 5250 | 0.0 | - | | 1.6114 | 5300 | 0.0 | - | | 1.6266 | 5350 | 0.0001 | - | | 1.6418 | 5400 | 0.0001 | - | | 1.6570 | 5450 | 0.0 | - | | 1.6722 | 5500 | 0.0001 | - | | 1.6874 | 5550 | 0.0 | - | | 1.7026 | 5600 | 0.0001 | - | | 1.7178 | 5650 | 0.0 | - | | 1.7330 | 5700 | 0.0001 | - | | 1.7483 | 5750 | 0.0001 | - | | 1.7635 | 5800 | 0.0001 | - | | 1.7787 | 5850 | 0.0001 | - | | 1.7939 | 5900 | 0.0 | - | | 1.8091 | 5950 | 0.0001 | - | | 1.8243 | 6000 | 0.0001 | - | | 1.8395 | 6050 | 0.0 | - | | 1.8547 | 6100 | 0.0001 | - | | 1.8699 | 6150 | 0.0 | - | | 1.8851 | 6200 | 0.0 | - | | 1.9003 | 6250 | 0.0 | - | | 1.9155 | 6300 | 0.0 | - | | 1.9307 | 6350 | 0.0001 | - | | 1.9459 | 6400 | 0.0 | - | | 1.9611 | 6450 | 0.0 | - | | 1.9763 | 6500 | 0.0001 | - | | 1.9915 | 6550 | 0.0 | - | | **2.0** | **6578** | **-** | **0.0939** | | 2.0067 | 6600 | 0.0001 | - | | 2.0219 | 6650 | 0.0001 | - | | 2.0371 | 6700 | 0.0001 | - | | 2.0523 | 6750 | 0.0001 | - | | 2.0675 | 6800 | 0.0 | - | | 2.0827 | 6850 | 0.0 | - | | 2.0979 | 6900 | 0.0 | - | | 2.1131 | 6950 | 0.0 | - | | 2.1283 | 7000 | 0.0001 | - | | 2.1435 | 7050 | 0.0001 | - | | 2.1587 | 7100 | 0.0 | - | | 2.1739 | 7150 | 0.0 | - | | 2.1891 | 7200 | 0.0001 | - | | 2.2043 | 7250 | 0.0001 | - | | 2.2195 | 7300 | 0.0 | - | | 2.2347 | 7350 | 0.0 | - | | 2.2499 | 7400 | 0.0 | - | | 2.2651 | 7450 | 0.0 | - | | 2.2803 | 7500 | 0.0 | - | | 2.2955 | 7550 | 0.0001 | - | | 2.3107 | 7600 | 0.0 | - | | 2.3259 | 7650 | 0.0001 | - | | 2.3411 | 7700 | 0.0 | - | | 2.3563 | 7750 | 0.0001 | - | | 2.3715 | 7800 | 0.0 | - | | 2.3867 | 7850 | 0.0001 | - | | 2.4019 | 7900 | 0.0 | - | | 2.4171 | 7950 | 0.0 | - | | 2.4324 | 8000 | 0.0 | - | | 2.4476 | 8050 | 0.0001 | - | | 2.4628 | 8100 | 0.0001 | - | | 2.4780 | 8150 | 0.0 | - | | 2.4932 | 8200 | 0.0001 | - | | 2.5084 | 8250 | 0.0001 | - | | 2.5236 | 8300 | 0.0001 | - | | 2.5388 | 8350 | 0.0 | - | | 2.5540 | 8400 | 0.0 | - | | 2.5692 | 8450 | 0.0 | - | | 2.5844 | 8500 | 0.0 | - | | 2.5996 | 8550 | 0.0 | - | | 2.6148 | 8600 | 0.0 | - | | 2.6300 | 8650 | 0.0 | - | | 2.6452 | 8700 | 0.0 | - | | 2.6604 | 8750 | 0.0 | - | | 2.6756 | 8800 | 0.0 | - | | 2.6908 | 8850 | 0.0 | - | | 2.7060 | 8900 | 0.0001 | - | | 2.7212 | 8950 | 0.0 | - | | 2.7364 | 9000 | 0.0 | - | | 2.7516 | 9050 | 0.0001 | - | | 2.7668 | 9100 | 0.0 | - | | 2.7820 | 9150 | 0.0 | - | | 2.7972 | 9200 | 0.0 | - | | 2.8124 | 9250 | 0.0 | - | | 2.8276 | 9300 | 0.0 | - | | 2.8428 | 9350 | 0.0 | - | | 2.8580 | 9400 | 0.0 | - | | 2.8732 | 9450 | 0.0 | - | | 2.8884 | 9500 | 0.0 | - | | 2.9036 | 9550 | 0.0 | - | | 2.9188 | 9600 | 0.0 | - | | 2.9340 | 9650 | 0.0 | - | | 2.9492 | 9700 | 0.0 | - | | 2.9644 | 9750 | 0.0 | - | | 2.9796 | 9800 | 0.0 | - | | 2.9948 | 9850 | 0.0 | - | | 3.0 | 9867 | - | 0.0951 | | 3.0100 | 9900 | 0.0 | - | | 3.0252 | 9950 | 0.0 | - | | 3.0404 | 10000 | 0.0 | - | | 3.0556 | 10050 | 0.0 | - | | 3.0708 | 10100 | 0.0 | - | | 3.0860 | 10150 | 0.0 | - | | 3.1012 | 10200 | 0.0 | - | | 3.1164 | 10250 | 0.0 | - | | 3.1317 | 10300 | 0.0 | - | | 3.1469 | 10350 | 0.0 | - | | 3.1621 | 10400 | 0.0 | - | | 3.1773 | 10450 | 0.0001 | - | | 3.1925 | 10500 | 0.0 | - | | 3.2077 | 10550 | 0.0 | - | | 3.2229 | 10600 | 0.0 | - | | 3.2381 | 10650 | 0.0 | - | | 3.2533 | 10700 | 0.0 | - | | 3.2685 | 10750 | 0.0 | - | | 3.2837 | 10800 | 0.0 | - | | 3.2989 | 10850 | 0.0 | - | | 3.3141 | 10900 | 0.0 | - | | 3.3293 | 10950 | 0.0 | - | | 3.3445 | 11000 | 0.0 | - | | 3.3597 | 11050 | 0.0 | - | | 3.3749 | 11100 | 0.0 | - | | 3.3901 | 11150 | 0.0 | - | | 3.4053 | 11200 | 0.0 | - | | 3.4205 | 11250 | 0.0 | - | | 3.4357 | 11300 | 0.0 | - | | 3.4509 | 11350 | 0.0 | - | | 3.4661 | 11400 | 0.0 | - | | 3.4813 | 11450 | 0.0 | - | | 3.4965 | 11500 | 0.0 | - | | 3.5117 | 11550 | 0.0 | - | | 3.5269 | 11600 | 0.0 | - | | 3.5421 | 11650 | 0.0 | - | | 3.5573 | 11700 | 0.0 | - | | 3.5725 | 11750 | 0.0 | - | | 3.5877 | 11800 | 0.0 | - | | 3.6029 | 11850 | 0.0 | - | | 3.6181 | 11900 | 0.0 | - | | 3.6333 | 11950 | 0.0 | - | | 3.6485 | 12000 | 0.0 | - | | 3.6637 | 12050 | 0.0 | - | | 3.6789 | 12100 | 0.0 | - | | 3.6941 | 12150 | 0.0 | - | | 3.7093 | 12200 | 0.0 | - | | 3.7245 | 12250 | 0.0 | - | | 3.7397 | 12300 | 0.0 | - | | 3.7549 | 12350 | 0.0 | - | | 3.7701 | 12400 | 0.0 | - | | 3.7853 | 12450 | 0.0 | - | | 3.8005 | 12500 | 0.0 | - | | 3.8157 | 12550 | 0.0 | - | | 3.8310 | 12600 | 0.0 | - | | 3.8462 | 12650 | 0.0 | - | | 3.8614 | 12700 | 0.0 | - | | 3.8766 | 12750 | 0.0 | - | | 3.8918 | 12800 | 0.0 | - | | 3.9070 | 12850 | 0.0 | - | | 3.9222 | 12900 | 0.0 | - | | 3.9374 | 12950 | 0.0 | - | | 3.9526 | 13000 | 0.0 | - | | 3.9678 | 13050 | 0.0 | - | | 3.9830 | 13100 | 0.0 | - | | 3.9982 | 13150 | 0.0 | - | | 4.0 | 13156 | - | 0.0954 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.3 - Sentence Transformers: 3.0.1 - Transformers: 4.39.0 - PyTorch: 2.3.0+cu121 - Datasets: 2.19.2 - Tokenizers: 0.15.2 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```