Totole commited on
Commit
da4bca8
·
verified ·
1 Parent(s): 3f09f07

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,397 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ base_model: sentence-transformers/all-MiniLM-L6-v2
9
+ metrics:
10
+ - accuracy
11
+ widget:
12
+ - text: Qu'est-ce que la biodiversité ?
13
+ - text: Quels sont les principaux avantages et inconvénients des réunions virtuelles
14
+ par rapport aux réunions en personne ?
15
+ - text: Comment sont organisees les alarmes ?
16
+ - text: Can you explain the process of wind energy generation and discuss its environmental
17
+ impacts compared to those of hydroelectric power?
18
+ - text: Quels est le point essentiel à retenir pour maximiser l'efficacité et les
19
+ bénéfices des réunions virtuelles
20
+ pipeline_tag: text-classification
21
+ inference: true
22
+ model-index:
23
+ - name: SetFit with sentence-transformers/all-MiniLM-L6-v2
24
+ results:
25
+ - task:
26
+ type: text-classification
27
+ name: Text Classification
28
+ dataset:
29
+ name: Unknown
30
+ type: unknown
31
+ split: test
32
+ metrics:
33
+ - type: accuracy
34
+ value: 0.9615384615384616
35
+ name: Accuracy
36
+ ---
37
+
38
+ # SetFit with sentence-transformers/all-MiniLM-L6-v2
39
+
40
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
41
+
42
+ The model has been trained using an efficient few-shot learning technique that involves:
43
+
44
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
45
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
46
+
47
+ ## Model Details
48
+
49
+ ### Model Description
50
+ - **Model Type:** SetFit
51
+ - **Sentence Transformer body:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
52
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
53
+ - **Maximum Sequence Length:** 256 tokens
54
+ - **Number of Classes:** 4 classes
55
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
56
+ <!-- - **Language:** Unknown -->
57
+ <!-- - **License:** Unknown -->
58
+
59
+ ### Model Sources
60
+
61
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
62
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
63
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
64
+
65
+ ### Model Labels
66
+ | Label | Examples |
67
+ |:-----------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
68
+ | sub_queries | <ul><li>"Quelles sont les démarches spécifiques à suivre pour obtenir l'approbation des plans par les autorités locales, et quelles sont les certifications requises pour les professionnels que je dois engager pour la construction en termes d'électricité et de plomberie ?"</li><li>'Quels sont les principaux concepts et exemples illustrant la réutilisation adaptative dans le cadre de projets urbains ?'</li><li>'What norm is there about cutting trees in France and UK ?'</li></ul> |
69
+ | simple_questions | <ul><li>'What measures can be taken to improve infrastructure resilience?'</li><li>'What is the capital of France?'</li><li>'Quels sont les exemples de projets de réutilisation adaptative réussis en France ?'</li></ul> |
70
+ | exchange | <ul><li>'Pourriez-vous reformuler les principaux obstacles rencontrés dans le domaine du design sous forme de petit poème ?'</li><li>'Pourriez-vous me fournir un résumé des points clés abordés dans notre discussion précédente ?'</li><li>'Could you explain that last point in a different way?'</li></ul> |
71
+ | summary | <ul><li>'How would you outline the crucial points raised?'</li><li>'Rédige une note de quelques lignes sur ce doc que je puisse transmettre à mon board'</li><li>'What is the main argument presented in the document?'</li></ul> |
72
+
73
+ ## Evaluation
74
+
75
+ ### Metrics
76
+ | Label | Accuracy |
77
+ |:--------|:---------|
78
+ | **all** | 0.9615 |
79
+
80
+ ## Uses
81
+
82
+ ### Direct Use for Inference
83
+
84
+ First install the SetFit library:
85
+
86
+ ```bash
87
+ pip install setfit
88
+ ```
89
+
90
+ Then you can load this model and run inference.
91
+
92
+ ```python
93
+ from setfit import SetFitModel
94
+
95
+ # Download from the 🤗 Hub
96
+ model = SetFitModel.from_pretrained("egis-group/router_mini_lm_l6")
97
+ # Run inference
98
+ preds = model("Qu'est-ce que la biodiversité ?")
99
+ ```
100
+
101
+ <!--
102
+ ### Downstream Use
103
+
104
+ *List how someone could finetune this model on their own dataset.*
105
+ -->
106
+
107
+ <!--
108
+ ### Out-of-Scope Use
109
+
110
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
111
+ -->
112
+
113
+ <!--
114
+ ## Bias, Risks and Limitations
115
+
116
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
117
+ -->
118
+
119
+ <!--
120
+ ### Recommendations
121
+
122
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
123
+ -->
124
+
125
+ ## Training Details
126
+
127
+ ### Training Set Metrics
128
+ | Training set | Min | Median | Max |
129
+ |:-------------|:----|:--------|:----|
130
+ | Word count | 5 | 13.8826 | 44 |
131
+
132
+ | Label | Training Sample Count |
133
+ |:---------|:----------------------|
134
+ | negative | 0 |
135
+ | positive | 0 |
136
+
137
+ ### Training Hyperparameters
138
+ - batch_size: (16, 16)
139
+ - num_epochs: (4, 4)
140
+ - max_steps: -1
141
+ - sampling_strategy: oversampling
142
+ - body_learning_rate: (2e-05, 1e-05)
143
+ - head_learning_rate: 0.01
144
+ - loss: CosineSimilarityLoss
145
+ - distance_metric: cosine_distance
146
+ - margin: 0.25
147
+ - end_to_end: False
148
+ - use_amp: False
149
+ - warmup_proportion: 0.1
150
+ - seed: 42
151
+ - eval_max_steps: -1
152
+ - load_best_model_at_end: True
153
+
154
+ ### Training Results
155
+ | Epoch | Step | Training Loss | Validation Loss |
156
+ |:-------:|:--------:|:-------------:|:---------------:|
157
+ | 0.0004 | 1 | 0.3522 | - |
158
+ | 0.0208 | 50 | 0.3095 | - |
159
+ | 0.0415 | 100 | 0.3199 | - |
160
+ | 0.0623 | 150 | 0.2971 | - |
161
+ | 0.0830 | 200 | 0.2819 | - |
162
+ | 0.1038 | 250 | 0.2287 | - |
163
+ | 0.1245 | 300 | 0.2742 | - |
164
+ | 0.1453 | 350 | 0.1912 | - |
165
+ | 0.1660 | 400 | 0.1778 | - |
166
+ | 0.1868 | 450 | 0.175 | - |
167
+ | 0.2076 | 500 | 0.1598 | - |
168
+ | 0.2283 | 550 | 0.0763 | - |
169
+ | 0.2491 | 600 | 0.0442 | - |
170
+ | 0.2698 | 650 | 0.0216 | - |
171
+ | 0.2906 | 700 | 0.0467 | - |
172
+ | 0.3113 | 750 | 0.0177 | - |
173
+ | 0.3321 | 800 | 0.0067 | - |
174
+ | 0.3528 | 850 | 0.0026 | - |
175
+ | 0.3736 | 900 | 0.0029 | - |
176
+ | 0.3944 | 950 | 0.0048 | - |
177
+ | 0.4151 | 1000 | 0.0012 | - |
178
+ | 0.4359 | 1050 | 0.0037 | - |
179
+ | 0.4566 | 1100 | 0.003 | - |
180
+ | 0.4774 | 1150 | 0.0014 | - |
181
+ | 0.4981 | 1200 | 0.0011 | - |
182
+ | 0.5189 | 1250 | 0.0008 | - |
183
+ | 0.5396 | 1300 | 0.002 | - |
184
+ | 0.5604 | 1350 | 0.0007 | - |
185
+ | 0.5812 | 1400 | 0.0007 | - |
186
+ | 0.6019 | 1450 | 0.0005 | - |
187
+ | 0.6227 | 1500 | 0.0007 | - |
188
+ | 0.6434 | 1550 | 0.0006 | - |
189
+ | 0.6642 | 1600 | 0.0004 | - |
190
+ | 0.6849 | 1650 | 0.0004 | - |
191
+ | 0.7057 | 1700 | 0.0006 | - |
192
+ | 0.7264 | 1750 | 0.0003 | - |
193
+ | 0.7472 | 1800 | 0.0004 | - |
194
+ | 0.7680 | 1850 | 0.0003 | - |
195
+ | 0.7887 | 1900 | 0.0004 | - |
196
+ | 0.8095 | 1950 | 0.0005 | - |
197
+ | 0.8302 | 2000 | 0.0008 | - |
198
+ | 0.8510 | 2050 | 0.0006 | - |
199
+ | 0.8717 | 2100 | 0.0002 | - |
200
+ | 0.8925 | 2150 | 0.0004 | - |
201
+ | 0.9132 | 2200 | 0.0002 | - |
202
+ | 0.9340 | 2250 | 0.0003 | - |
203
+ | 0.9548 | 2300 | 0.0003 | - |
204
+ | 0.9755 | 2350 | 0.0004 | - |
205
+ | 0.9963 | 2400 | 0.0005 | - |
206
+ | **1.0** | **2409** | **-** | **0.0433** |
207
+ | 1.0170 | 2450 | 0.0003 | - |
208
+ | 1.0378 | 2500 | 0.0006 | - |
209
+ | 1.0585 | 2550 | 0.0003 | - |
210
+ | 1.0793 | 2600 | 0.0004 | - |
211
+ | 1.1000 | 2650 | 0.0002 | - |
212
+ | 1.1208 | 2700 | 0.0002 | - |
213
+ | 1.1416 | 2750 | 0.0002 | - |
214
+ | 1.1623 | 2800 | 0.0002 | - |
215
+ | 1.1831 | 2850 | 0.0002 | - |
216
+ | 1.2038 | 2900 | 0.0002 | - |
217
+ | 1.2246 | 2950 | 0.0002 | - |
218
+ | 1.2453 | 3000 | 0.0002 | - |
219
+ | 1.2661 | 3050 | 0.0002 | - |
220
+ | 1.2868 | 3100 | 0.0001 | - |
221
+ | 1.3076 | 3150 | 0.0001 | - |
222
+ | 1.3284 | 3200 | 0.0001 | - |
223
+ | 1.3491 | 3250 | 0.0002 | - |
224
+ | 1.3699 | 3300 | 0.0001 | - |
225
+ | 1.3906 | 3350 | 0.0002 | - |
226
+ | 1.4114 | 3400 | 0.0001 | - |
227
+ | 1.4321 | 3450 | 0.0001 | - |
228
+ | 1.4529 | 3500 | 0.0001 | - |
229
+ | 1.4736 | 3550 | 0.0002 | - |
230
+ | 1.4944 | 3600 | 0.0001 | - |
231
+ | 1.5152 | 3650 | 0.0001 | - |
232
+ | 1.5359 | 3700 | 0.0001 | - |
233
+ | 1.5567 | 3750 | 0.0001 | - |
234
+ | 1.5774 | 3800 | 0.0001 | - |
235
+ | 1.5982 | 3850 | 0.0001 | - |
236
+ | 1.6189 | 3900 | 0.0001 | - |
237
+ | 1.6397 | 3950 | 0.0001 | - |
238
+ | 1.6604 | 4000 | 0.0001 | - |
239
+ | 1.6812 | 4050 | 0.0001 | - |
240
+ | 1.7020 | 4100 | 0.0001 | - |
241
+ | 1.7227 | 4150 | 0.0001 | - |
242
+ | 1.7435 | 4200 | 0.0001 | - |
243
+ | 1.7642 | 4250 | 0.0001 | - |
244
+ | 1.7850 | 4300 | 0.0001 | - |
245
+ | 1.8057 | 4350 | 0.0001 | - |
246
+ | 1.8265 | 4400 | 0.0001 | - |
247
+ | 1.8472 | 4450 | 0.0001 | - |
248
+ | 1.8680 | 4500 | 0.0001 | - |
249
+ | 1.8888 | 4550 | 0.0001 | - |
250
+ | 1.9095 | 4600 | 0.0001 | - |
251
+ | 1.9303 | 4650 | 0.0001 | - |
252
+ | 1.9510 | 4700 | 0.0001 | - |
253
+ | 1.9718 | 4750 | 0.0001 | - |
254
+ | 1.9925 | 4800 | 0.0001 | - |
255
+ | 2.0 | 4818 | - | 0.0489 |
256
+ | 2.0133 | 4850 | 0.0 | - |
257
+ | 2.0340 | 4900 | 0.0001 | - |
258
+ | 2.0548 | 4950 | 0.0001 | - |
259
+ | 2.0756 | 5000 | 0.0001 | - |
260
+ | 2.0963 | 5050 | 0.0001 | - |
261
+ | 2.1171 | 5100 | 0.0001 | - |
262
+ | 2.1378 | 5150 | 0.0001 | - |
263
+ | 2.1586 | 5200 | 0.0001 | - |
264
+ | 2.1793 | 5250 | 0.0001 | - |
265
+ | 2.2001 | 5300 | 0.0001 | - |
266
+ | 2.2208 | 5350 | 0.0001 | - |
267
+ | 2.2416 | 5400 | 0.0001 | - |
268
+ | 2.2623 | 5450 | 0.0001 | - |
269
+ | 2.2831 | 5500 | 0.0001 | - |
270
+ | 2.3039 | 5550 | 0.0001 | - |
271
+ | 2.3246 | 5600 | 0.0001 | - |
272
+ | 2.3454 | 5650 | 0.0001 | - |
273
+ | 2.3661 | 5700 | 0.0001 | - |
274
+ | 2.3869 | 5750 | 0.0001 | - |
275
+ | 2.4076 | 5800 | 0.0 | - |
276
+ | 2.4284 | 5850 | 0.0001 | - |
277
+ | 2.4491 | 5900 | 0.0001 | - |
278
+ | 2.4699 | 5950 | 0.0001 | - |
279
+ | 2.4907 | 6000 | 0.0001 | - |
280
+ | 2.5114 | 6050 | 0.0 | - |
281
+ | 2.5322 | 6100 | 0.0001 | - |
282
+ | 2.5529 | 6150 | 0.0 | - |
283
+ | 2.5737 | 6200 | 0.0 | - |
284
+ | 2.5944 | 6250 | 0.0001 | - |
285
+ | 2.6152 | 6300 | 0.0001 | - |
286
+ | 2.6359 | 6350 | 0.0001 | - |
287
+ | 2.6567 | 6400 | 0.0001 | - |
288
+ | 2.6775 | 6450 | 0.0001 | - |
289
+ | 2.6982 | 6500 | 0.0001 | - |
290
+ | 2.7190 | 6550 | 0.0 | - |
291
+ | 2.7397 | 6600 | 0.0001 | - |
292
+ | 2.7605 | 6650 | 0.0 | - |
293
+ | 2.7812 | 6700 | 0.0001 | - |
294
+ | 2.8020 | 6750 | 0.0 | - |
295
+ | 2.8227 | 6800 | 0.0001 | - |
296
+ | 2.8435 | 6850 | 0.0 | - |
297
+ | 2.8643 | 6900 | 0.0001 | - |
298
+ | 2.8850 | 6950 | 0.0001 | - |
299
+ | 2.9058 | 7000 | 0.0 | - |
300
+ | 2.9265 | 7050 | 0.0 | - |
301
+ | 2.9473 | 7100 | 0.0001 | - |
302
+ | 2.9680 | 7150 | 0.0 | - |
303
+ | 2.9888 | 7200 | 0.0001 | - |
304
+ | 3.0 | 7227 | - | 0.0513 |
305
+ | 3.0095 | 7250 | 0.0 | - |
306
+ | 3.0303 | 7300 | 0.0001 | - |
307
+ | 3.0511 | 7350 | 0.0001 | - |
308
+ | 3.0718 | 7400 | 0.0001 | - |
309
+ | 3.0926 | 7450 | 0.0001 | - |
310
+ | 3.1133 | 7500 | 0.0001 | - |
311
+ | 3.1341 | 7550 | 0.0 | - |
312
+ | 3.1548 | 7600 | 0.0 | - |
313
+ | 3.1756 | 7650 | 0.0 | - |
314
+ | 3.1963 | 7700 | 0.0 | - |
315
+ | 3.2171 | 7750 | 0.0 | - |
316
+ | 3.2379 | 7800 | 0.0 | - |
317
+ | 3.2586 | 7850 | 0.0 | - |
318
+ | 3.2794 | 7900 | 0.0001 | - |
319
+ | 3.3001 | 7950 | 0.0 | - |
320
+ | 3.3209 | 8000 | 0.0 | - |
321
+ | 3.3416 | 8050 | 0.0 | - |
322
+ | 3.3624 | 8100 | 0.0001 | - |
323
+ | 3.3831 | 8150 | 0.0 | - |
324
+ | 3.4039 | 8200 | 0.0 | - |
325
+ | 3.4247 | 8250 | 0.0 | - |
326
+ | 3.4454 | 8300 | 0.0 | - |
327
+ | 3.4662 | 8350 | 0.0001 | - |
328
+ | 3.4869 | 8400 | 0.0 | - |
329
+ | 3.5077 | 8450 | 0.0 | - |
330
+ | 3.5284 | 8500 | 0.0 | - |
331
+ | 3.5492 | 8550 | 0.0 | - |
332
+ | 3.5699 | 8600 | 0.0 | - |
333
+ | 3.5907 | 8650 | 0.0 | - |
334
+ | 3.6115 | 8700 | 0.0 | - |
335
+ | 3.6322 | 8750 | 0.0 | - |
336
+ | 3.6530 | 8800 | 0.0001 | - |
337
+ | 3.6737 | 8850 | 0.0001 | - |
338
+ | 3.6945 | 8900 | 0.0 | - |
339
+ | 3.7152 | 8950 | 0.0001 | - |
340
+ | 3.7360 | 9000 | 0.0001 | - |
341
+ | 3.7567 | 9050 | 0.0 | - |
342
+ | 3.7775 | 9100 | 0.0 | - |
343
+ | 3.7983 | 9150 | 0.0 | - |
344
+ | 3.8190 | 9200 | 0.0001 | - |
345
+ | 3.8398 | 9250 | 0.0 | - |
346
+ | 3.8605 | 9300 | 0.0 | - |
347
+ | 3.8813 | 9350 | 0.0 | - |
348
+ | 3.9020 | 9400 | 0.0001 | - |
349
+ | 3.9228 | 9450 | 0.0001 | - |
350
+ | 3.9435 | 9500 | 0.0 | - |
351
+ | 3.9643 | 9550 | 0.0 | - |
352
+ | 3.9851 | 9600 | 0.0 | - |
353
+ | 4.0 | 9636 | - | 0.0508 |
354
+
355
+ * The bold row denotes the saved checkpoint.
356
+ ### Framework Versions
357
+ - Python: 3.10.12
358
+ - SetFit: 1.0.3
359
+ - Sentence Transformers: 3.0.0
360
+ - Transformers: 4.39.0
361
+ - PyTorch: 2.3.0+cu121
362
+ - Datasets: 2.19.2
363
+ - Tokenizers: 0.15.2
364
+
365
+ ## Citation
366
+
367
+ ### BibTeX
368
+ ```bibtex
369
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
370
+ doi = {10.48550/ARXIV.2209.11055},
371
+ url = {https://arxiv.org/abs/2209.11055},
372
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
373
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
374
+ title = {Efficient Few-Shot Learning Without Prompts},
375
+ publisher = {arXiv},
376
+ year = {2022},
377
+ copyright = {Creative Commons Attribution 4.0 International}
378
+ }
379
+ ```
380
+
381
+ <!--
382
+ ## Glossary
383
+
384
+ *Clearly define terms in order to be accessible across audiences.*
385
+ -->
386
+
387
+ <!--
388
+ ## Model Card Authors
389
+
390
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
391
+ -->
392
+
393
+ <!--
394
+ ## Model Card Contact
395
+
396
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
397
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "checkpoints/step_2409",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.39.0",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.6.1",
5
+ "pytorch": "1.8.1"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "labels": [
3
+ "negative",
4
+ "positive"
5
+ ],
6
+ "normalize_embeddings": false
7
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed6442db7f97d94840671c84841ad7363344c79bab1ec42219c80621552717bd
3
+ size 90864192
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2bd59ea0bfeef4bf046cd5a46ea60bd9821a32a6c20fed35f55ff21ca46eda4e
3
+ size 13415
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 256,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff