--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-finetuned-ner results: [] --- # bert-base-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co./bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3788 - Precision: 0.5395 - Recall: 0.5234 - F1: 0.5313 - Accuracy: 0.9307 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 121 | 0.4099 | 0.2393 | 0.2383 | 0.2388 | 0.8962 | | No log | 2.0 | 242 | 0.3394 | 0.4340 | 0.3220 | 0.3697 | 0.9180 | | No log | 3.0 | 363 | 0.2952 | 0.5017 | 0.4170 | 0.4555 | 0.9271 | | No log | 4.0 | 484 | 0.3419 | 0.5301 | 0.4 | 0.4559 | 0.9284 | | 0.321 | 5.0 | 605 | 0.3269 | 0.5354 | 0.4723 | 0.5019 | 0.9313 | | 0.321 | 6.0 | 726 | 0.3382 | 0.5091 | 0.4780 | 0.4931 | 0.9285 | | 0.321 | 7.0 | 847 | 0.3528 | 0.5489 | 0.5177 | 0.5328 | 0.9315 | | 0.321 | 8.0 | 968 | 0.3623 | 0.5446 | 0.5191 | 0.5316 | 0.9306 | | 0.0997 | 9.0 | 1089 | 0.3706 | 0.5225 | 0.5262 | 0.5244 | 0.9283 | | 0.0997 | 10.0 | 1210 | 0.3788 | 0.5395 | 0.5234 | 0.5313 | 0.9307 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1