--- language: es tags: - sagemaker - ruperta - TextClassification - SentimentAnalysis license: apache-2.0 datasets: - IMDbreviews_es model-index: name: RuPERTa_base_sentiment_analysis_es results: - task: name: Sentiment Analysis type: sentiment-analysis - dataset: name: "IMDb Reviews in Spanish" type: IMDbreviews_es - metrics: - name: Accuracy, type: accuracy, value: 0.881866 - name: F1 Score, type: f1, value: 0.008272 - name: Precision, type: precision, value: 0.858605 - name: Recall, type: recall, value: 0.920062 widget: - text: "Se trata de una película interesante, con un solido argumento y un gran interpretación de su actor principal" --- ## Model `RuPERTa_base_sentiment_analysis_es` ### **A finetuned model for Sentiment analysis in Spanish** This model was trained using Amazon SageMaker and the new Hugging Face Deep Learning container, The base model is **RuPERTa-base (uncased)** which is a RoBERTa model trained on a uncased version of big Spanish corpus. It was trained by mrm8488, Manuel Romero.[Link to base model](https://huggingface.co./mrm8488/RuPERTa-base) ## Dataset The dataset is a collection of movie reviews in Spanish, about 50,000 reviews. The dataset is balanced and provides every review in english, in spanish and the label in both languages. Sizes of datasets: - Train dataset: 42,500 - Validation dataset: 3,750 - Test dataset: 3,750 ## Hyperparameters { "epochs": "4", "train_batch_size": "32", "eval_batch_size": "8", "fp16": "true", "learning_rate": "3e-05", "model_name": "\"mrm8488/RuPERTa-base\"", "sagemaker_container_log_level": "20", "sagemaker_program": "\"train.py\"", } ## Evaluation results Accuracy = 0.8629333333333333 F1 Score = 0.8648790746582545 Precision = 0.8479381443298969 Recall = 0.8825107296137339 ## Test results Accuracy = 0.8066666666666666 F1 Score = 0.8057862309134743 Precision = 0.7928307854507116 Recall = 0.8191721132897604 ## Model in action ### Usage for Sentiment Analysis ```python import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("edumunozsala/RuPERTa_base_sentiment_analysis_es") model = AutoModelForSequenceClassification.from_pretrained("edumunozsala/RuPERTa_base_sentiment_analysis_es") text ="Se trata de una película interesante, con un solido argumento y un gran interpretación de su actor principal" input_ids = torch.tensor(tokenizer.encode(text)).unsqueeze(0) outputs = model(input_ids) output = outputs.logits.argmax(1) ``` Created by [Eduardo Muñoz/@edumunozsala](https://github.com/edumunozsala)