File size: 1,912 Bytes
5aee22c
d7a8778
93b0923
5aee22c
 
 
 
 
 
 
 
 
 
 
 
 
 
d7a8778
5aee22c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7a8778
5aee22c
 
 
d7a8778
 
 
 
 
 
 
 
 
 
 
 
 
 
5aee22c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
base_model: eddieman78/litbank-coref-mem-base
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: scripts-coref-mem-base
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# scripts-coref-mem-base

This model is a fine-tuned version of [eddieman78/litbank-coref-mem-base](https://huggingface.co./eddieman78/litbank-coref-mem-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0032

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 12

### Training results

| Training Loss | Epoch | Step  | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 0.022         | 1.0   | 1807  | 0.0133          |
| 0.0138        | 2.0   | 3614  | 0.0090          |
| 0.011         | 3.0   | 5421  | 0.0072          |
| 0.0088        | 4.0   | 7228  | 0.0058          |
| 0.0072        | 5.0   | 9035  | 0.0051          |
| 0.0063        | 6.0   | 10842 | 0.0044          |
| 0.0057        | 7.0   | 12649 | 0.0041          |
| 0.0052        | 8.0   | 14456 | 0.0038          |
| 0.0048        | 9.0   | 16263 | 0.0035          |
| 0.0047        | 10.0  | 18070 | 0.0034          |
| 0.0043        | 11.0  | 19877 | 0.0033          |
| 0.0041        | 12.0  | 21684 | 0.0032          |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.17.0
- Tokenizers 0.19.1