Upload config_finetuning.yaml
Browse files- config_finetuning.yaml +483 -0
config_finetuning.yaml
ADDED
@@ -0,0 +1,483 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
data:
|
2 |
+
format: zarr
|
3 |
+
resolution: n320
|
4 |
+
frequency: 6h
|
5 |
+
timestep: 6h
|
6 |
+
forcing:
|
7 |
+
- cos_latitude
|
8 |
+
- cos_longitude
|
9 |
+
- sin_latitude
|
10 |
+
- sin_longitude
|
11 |
+
- cos_julian_day
|
12 |
+
- cos_local_time
|
13 |
+
- sin_julian_day
|
14 |
+
- sin_local_time
|
15 |
+
- insolation
|
16 |
+
- lsm
|
17 |
+
- sdor
|
18 |
+
- slor
|
19 |
+
- z
|
20 |
+
diagnostic:
|
21 |
+
- tp
|
22 |
+
- cp
|
23 |
+
- sf
|
24 |
+
- tcc
|
25 |
+
- hcc
|
26 |
+
- lcc
|
27 |
+
- mcc
|
28 |
+
- ro
|
29 |
+
- ssrd
|
30 |
+
- strd
|
31 |
+
- 100u
|
32 |
+
- 100v
|
33 |
+
remapped: null
|
34 |
+
normalizer:
|
35 |
+
default: mean-std
|
36 |
+
remap:
|
37 |
+
cp: tp
|
38 |
+
sf: tp
|
39 |
+
std:
|
40 |
+
- tp
|
41 |
+
- cp
|
42 |
+
- sf
|
43 |
+
- ro
|
44 |
+
- tcw
|
45 |
+
- ssrd
|
46 |
+
- q_50
|
47 |
+
- q_100
|
48 |
+
- q_150
|
49 |
+
- q_200
|
50 |
+
- q_250
|
51 |
+
- q_300
|
52 |
+
- q_400
|
53 |
+
- q_500
|
54 |
+
- q_600
|
55 |
+
- q_700
|
56 |
+
- q_850
|
57 |
+
- q_925
|
58 |
+
- q_1000
|
59 |
+
min-max: null
|
60 |
+
max:
|
61 |
+
- sdor
|
62 |
+
- slor
|
63 |
+
- z
|
64 |
+
none:
|
65 |
+
- cos_latitude
|
66 |
+
- cos_longitude
|
67 |
+
- sin_latitude
|
68 |
+
- sin_longitude
|
69 |
+
- cos_julian_day
|
70 |
+
- cos_local_time
|
71 |
+
- sin_julian_day
|
72 |
+
- sin_local_time
|
73 |
+
- insolation
|
74 |
+
- lsm
|
75 |
+
- tcc
|
76 |
+
- mcc
|
77 |
+
- hcc
|
78 |
+
- lcc
|
79 |
+
- swvl1
|
80 |
+
- swvl2
|
81 |
+
imputer:
|
82 |
+
default: none
|
83 |
+
remapper:
|
84 |
+
default: none
|
85 |
+
processors:
|
86 |
+
normalizer:
|
87 |
+
_target_: anemoi.models.preprocessing.normalizer.InputNormalizer
|
88 |
+
_convert_: all
|
89 |
+
config:
|
90 |
+
default: mean-std
|
91 |
+
remap:
|
92 |
+
cp: tp
|
93 |
+
sf: tp
|
94 |
+
std:
|
95 |
+
- tp
|
96 |
+
- cp
|
97 |
+
- sf
|
98 |
+
- ro
|
99 |
+
- tcw
|
100 |
+
- ssrd
|
101 |
+
- q_50
|
102 |
+
- q_100
|
103 |
+
- q_150
|
104 |
+
- q_200
|
105 |
+
- q_250
|
106 |
+
- q_300
|
107 |
+
- q_400
|
108 |
+
- q_500
|
109 |
+
- q_600
|
110 |
+
- q_700
|
111 |
+
- q_850
|
112 |
+
- q_925
|
113 |
+
- q_1000
|
114 |
+
min-max: null
|
115 |
+
max:
|
116 |
+
- sdor
|
117 |
+
- slor
|
118 |
+
- z
|
119 |
+
none:
|
120 |
+
- cos_latitude
|
121 |
+
- cos_longitude
|
122 |
+
- sin_latitude
|
123 |
+
- sin_longitude
|
124 |
+
- cos_julian_day
|
125 |
+
- cos_local_time
|
126 |
+
- sin_julian_day
|
127 |
+
- sin_local_time
|
128 |
+
- insolation
|
129 |
+
- lsm
|
130 |
+
- tcc
|
131 |
+
- mcc
|
132 |
+
- hcc
|
133 |
+
- lcc
|
134 |
+
- swvl1
|
135 |
+
- swvl2
|
136 |
+
num_features: 115
|
137 |
+
|
138 |
+
dataloader:
|
139 |
+
prefetch_factor: 2
|
140 |
+
pin_memory: True
|
141 |
+
read_group_size: 4
|
142 |
+
num_workers:
|
143 |
+
training: 8
|
144 |
+
validation: 8
|
145 |
+
test: 8
|
146 |
+
predict: 8
|
147 |
+
batch_size:
|
148 |
+
training: 1
|
149 |
+
validation: 1
|
150 |
+
test: 4
|
151 |
+
predict: 4
|
152 |
+
limit_batches:
|
153 |
+
training: 1000
|
154 |
+
validation: 10
|
155 |
+
test: 20
|
156 |
+
predict: 20
|
157 |
+
dataset: ${hardware.paths.data}/${hardware.files.dataset}
|
158 |
+
land_dataset: ${hardware.paths.data}/${hardware.files.dataset_land}
|
159 |
+
land_variables: [100u, 100v, swvl1, swvl2, stl1, stl2, tcc, lcc, mcc, hcc, sf, ro, strd, ssrd]
|
160 |
+
training:
|
161 |
+
dataset:
|
162 |
+
- dataset: ${dataloader.dataset}
|
163 |
+
start: null
|
164 |
+
end: 2022
|
165 |
+
frequency: ${data.frequency}
|
166 |
+
drop: []
|
167 |
+
- dataset: ${dataloader.land_dataset}
|
168 |
+
start: null
|
169 |
+
end: 2022
|
170 |
+
frequency: ${data.frequency}
|
171 |
+
select: ${dataloader.land_variables}
|
172 |
+
start: null
|
173 |
+
end: 2022
|
174 |
+
drop: []
|
175 |
+
validation:
|
176 |
+
dataset:
|
177 |
+
- dataset: ${dataloader.dataset}
|
178 |
+
start: 2022
|
179 |
+
end: 2022
|
180 |
+
frequency: ${data.frequency}
|
181 |
+
drop: []
|
182 |
+
- dataset: ${dataloader.land_dataset}
|
183 |
+
start: 2022
|
184 |
+
end: 2022
|
185 |
+
frequency: ${data.frequency}
|
186 |
+
select: ${dataloader.land_variables}
|
187 |
+
start: 2022
|
188 |
+
end: 2022
|
189 |
+
drop: []
|
190 |
+
validation_rollout: 1
|
191 |
+
|
192 |
+
diagnostics:
|
193 |
+
plot:
|
194 |
+
asynchronous: False
|
195 |
+
datashader: True
|
196 |
+
frequency:
|
197 |
+
batch: 750
|
198 |
+
epoch: 10
|
199 |
+
parameters: [tp]
|
200 |
+
sample_idx: 0
|
201 |
+
precip_and_related_fields: [tp, cp]
|
202 |
+
callbacks: []
|
203 |
+
enabled: True
|
204 |
+
scatter: False
|
205 |
+
mode: asyncio
|
206 |
+
callbacks: {}
|
207 |
+
benchmark_profiler:
|
208 |
+
memory:
|
209 |
+
enabled: True
|
210 |
+
steps: 5
|
211 |
+
warmup: 2
|
212 |
+
extra_plots: False
|
213 |
+
trace_rank0_only: False
|
214 |
+
time:
|
215 |
+
enabled: True
|
216 |
+
verbose: False
|
217 |
+
speed:
|
218 |
+
enabled: True
|
219 |
+
system:
|
220 |
+
enabled: True
|
221 |
+
model_summary:
|
222 |
+
enabled: True
|
223 |
+
snapshot:
|
224 |
+
enabled: True
|
225 |
+
steps: 4
|
226 |
+
warmup: 0
|
227 |
+
debug:
|
228 |
+
anomaly_detection: False
|
229 |
+
profiler: False
|
230 |
+
enable_checkpointing: True
|
231 |
+
checkpoint:
|
232 |
+
every_n_minutes:
|
233 |
+
save_frequency: 30
|
234 |
+
num_models_saved: 3
|
235 |
+
every_n_epochs:
|
236 |
+
save_frequency: 1
|
237 |
+
num_models_saved: 3
|
238 |
+
every_n_train_steps:
|
239 |
+
save_frequency: null
|
240 |
+
num_models_saved: 0
|
241 |
+
log:
|
242 |
+
wandb:
|
243 |
+
enabled: False
|
244 |
+
tensorboard:
|
245 |
+
enabled: False
|
246 |
+
mlflow:
|
247 |
+
enabled: False
|
248 |
+
interval: 100
|
249 |
+
enable_progress_bar: True
|
250 |
+
print_memory_summary: False
|
251 |
+
|
252 |
+
hardware:
|
253 |
+
paths:
|
254 |
+
data: ${oc.decode:${oc.env:DATASETS_PATH}}
|
255 |
+
output: ${oc.decode:${oc.env:OUTPUT_DIR}}
|
256 |
+
logs:
|
257 |
+
base: ${hardware.paths.output}/logs
|
258 |
+
wandb: ${hardware.paths.output}/logs/wandb
|
259 |
+
mlflow: ${hardware.paths.output}/logs/mlflow
|
260 |
+
tensorboard: ${hardware.paths.output}/logs/tensorboard
|
261 |
+
checkpoints: ${hardware.paths.output}/checkpoint/
|
262 |
+
plots: ${hardware.paths.output}/plots/
|
263 |
+
profiler: ${hardware.paths.output}/profiler/
|
264 |
+
graph: ${hardware.paths.output}/graphs/
|
265 |
+
files:
|
266 |
+
dataset: aifs-od-an-oper-0001-mars-n320-2016-2023-6h-v6.zarr
|
267 |
+
dataset_land: aifs-od-an-oper-0001-mars-n320-2016-2023-6h-v1-land.zarr
|
268 |
+
graph: graph_enc_proc_dec_n320.pt
|
269 |
+
checkpoint:
|
270 |
+
every_n_epochs: aifs-by_epoch-epoch_{epoch:03d}-val_wmse_{val_wmse:.3e}
|
271 |
+
every_n_train_steps: aifs-by_step-epoch_{epoch:03d}-step_{step:06d}
|
272 |
+
every_n_minutes: aifs-by_time-epoch_{epoch:03d}-step_{step:06d}
|
273 |
+
warm_start: null
|
274 |
+
accelerator: auto
|
275 |
+
num_gpus_per_node: 4
|
276 |
+
num_nodes: 16
|
277 |
+
num_gpus_per_model: 4
|
278 |
+
|
279 |
+
graph:
|
280 |
+
overwrite: True
|
281 |
+
data: data
|
282 |
+
hidden: hidden
|
283 |
+
nodes:
|
284 |
+
data:
|
285 |
+
node_builder:
|
286 |
+
_target_: anemoi.graphs.nodes.ZarrDatasetNodes
|
287 |
+
dataset: ${dataloader.dataset}
|
288 |
+
attributes:
|
289 |
+
area_weight:
|
290 |
+
_target_: anemoi.graphs.nodes.attributes.AreaWeights
|
291 |
+
norm: unit-max
|
292 |
+
hidden:
|
293 |
+
node_builder:
|
294 |
+
_target_: anemoi.graphs.nodes.ReducedGaussianGridNodes
|
295 |
+
grid: o96
|
296 |
+
edges:
|
297 |
+
- source_name: data
|
298 |
+
target_name: hidden
|
299 |
+
edge_builder:
|
300 |
+
_target_: anemoi.graphs.edges.CutOffEdges
|
301 |
+
cutoff_factor: 0.6
|
302 |
+
attributes:
|
303 |
+
edge_length:
|
304 |
+
_target_: anemoi.graphs.edges.attributes.EdgeLength
|
305 |
+
norm: unit-std
|
306 |
+
edge_dirs:
|
307 |
+
_target_: anemoi.graphs.edges.attributes.EdgeDirection
|
308 |
+
norm: unit-std
|
309 |
+
- source_name: hidden
|
310 |
+
target_name: data
|
311 |
+
edge_builder:
|
312 |
+
_target_: anemoi.graphs.edges.KNNEdges
|
313 |
+
num_nearest_neighbours: 3
|
314 |
+
attributes:
|
315 |
+
edge_length:
|
316 |
+
_target_: anemoi.graphs.edges.attributes.EdgeLength
|
317 |
+
norm: unit-std
|
318 |
+
edge_dirs:
|
319 |
+
_target_: anemoi.graphs.edges.attributes.EdgeDirection
|
320 |
+
norm: unit-std
|
321 |
+
attributes:
|
322 |
+
nodes:
|
323 |
+
area_weight:
|
324 |
+
_target_: anemoi.graphs.nodes.attributes.AreaWeights
|
325 |
+
norm: unit-max
|
326 |
+
edges:
|
327 |
+
edge_length:
|
328 |
+
_target_: anemoi.graphs.edges.attributes.EdgeLength
|
329 |
+
norm: unit-std
|
330 |
+
edge_dirs:
|
331 |
+
_target_: anemoi.graphs.edges.attributes.EdgeDirection
|
332 |
+
norm: unit-std
|
333 |
+
|
334 |
+
model:
|
335 |
+
activation: GELU
|
336 |
+
num_channels: 1024
|
337 |
+
model:
|
338 |
+
_target_: anemoi.models.models.encoder_processor_decoder.AnemoiModelEncProcDec
|
339 |
+
processor:
|
340 |
+
_target_: anemoi.models.layers.processor.TransformerProcessor
|
341 |
+
_convert_: all
|
342 |
+
activation: GELU
|
343 |
+
num_layers: 16
|
344 |
+
num_chunks: 2
|
345 |
+
mlp_hidden_ratio: 4
|
346 |
+
num_heads: 16
|
347 |
+
window_size: 1120
|
348 |
+
dropout_p: 0.0
|
349 |
+
encoder:
|
350 |
+
_target_: anemoi.models.layers.mapper.GraphTransformerForwardMapper
|
351 |
+
_convert_: all
|
352 |
+
trainable_size: 8
|
353 |
+
sub_graph_edge_attributes: [edge_length, edge_dirs]
|
354 |
+
activation: GELU
|
355 |
+
num_chunks: 1
|
356 |
+
mlp_hidden_ratio: 4
|
357 |
+
num_heads: 16
|
358 |
+
decoder:
|
359 |
+
_target_: anemoi.models.layers.mapper.GraphTransformerBackwardMapper
|
360 |
+
_convert_: all
|
361 |
+
trainable_size: 8
|
362 |
+
sub_graph_edge_attributes: [edge_length, edge_dirs]
|
363 |
+
activation: GELU
|
364 |
+
num_chunks: 1
|
365 |
+
mlp_hidden_ratio: 4
|
366 |
+
num_heads: 16
|
367 |
+
trainable_parameters:
|
368 |
+
data: 8
|
369 |
+
hidden: 8
|
370 |
+
data2hidden: 8
|
371 |
+
hidden2data: 8
|
372 |
+
attributes:
|
373 |
+
edges: [edge_length, edge_dirs]
|
374 |
+
nodes: []
|
375 |
+
node_loss_weight: area_weight
|
376 |
+
bounding:
|
377 |
+
- _target_: anemoi.models.layers.bounding.ReluBounding
|
378 |
+
variables:
|
379 |
+
- tp
|
380 |
+
- ro
|
381 |
+
- tcw
|
382 |
+
- ssrd
|
383 |
+
- q_50
|
384 |
+
- q_100
|
385 |
+
- q_150
|
386 |
+
- q_200
|
387 |
+
- q_250
|
388 |
+
- q_300
|
389 |
+
- q_400
|
390 |
+
- q_500
|
391 |
+
- q_600
|
392 |
+
- q_700
|
393 |
+
- q_850
|
394 |
+
- q_925
|
395 |
+
- q_1000
|
396 |
+
- _target_: anemoi.models.layers.bounding.HardtanhBounding
|
397 |
+
variables: [tcc, swvl1, swvl2]
|
398 |
+
min_val: 0
|
399 |
+
max_val: 1
|
400 |
+
- _target_: anemoi.models.layers.bounding.FractionBounding
|
401 |
+
variables: [cp, sf]
|
402 |
+
min_val: 0
|
403 |
+
max_val: 1
|
404 |
+
total_var: tp
|
405 |
+
- _target_: anemoi.models.layers.bounding.FractionBounding
|
406 |
+
variables: [lcc, mcc, hcc]
|
407 |
+
min_val: 0
|
408 |
+
max_val: 1
|
409 |
+
total_var: tcc
|
410 |
+
|
411 |
+
training:
|
412 |
+
run_id: ${oc.decode:${oc.env:PRETRAINING_RUN_ID}}
|
413 |
+
fork_run_id: ${oc.decode:${oc.env:PRETRAINING_RUN_ID}}
|
414 |
+
load_weights_only: True
|
415 |
+
deterministic: False
|
416 |
+
precision: 16-mixed
|
417 |
+
multistep_input: 2
|
418 |
+
accum_grad_batches: 1
|
419 |
+
num_sanity_val_steps: 6
|
420 |
+
gradient_clip:
|
421 |
+
val: 32.0
|
422 |
+
algorithm: value
|
423 |
+
swa:
|
424 |
+
enabled: False
|
425 |
+
lr: 0.0001
|
426 |
+
zero_optimizer: False
|
427 |
+
training_loss:
|
428 |
+
_target_: anemoi.training.losses.mse.WeightedMSELoss
|
429 |
+
scalars:
|
430 |
+
- variable
|
431 |
+
- loss_weights_mask
|
432 |
+
ignore_nans: False
|
433 |
+
loss_gradient_scaling: False
|
434 |
+
validation_metrics:
|
435 |
+
- _target_: anemoi.training.losses.mse.WeightedMSELoss
|
436 |
+
scalars: []
|
437 |
+
ignore_nans: True
|
438 |
+
rollout:
|
439 |
+
start: 1
|
440 |
+
epoch_increment: 1
|
441 |
+
max: 12
|
442 |
+
max_epochs: 13
|
443 |
+
max_steps: 150000
|
444 |
+
lr:
|
445 |
+
rate: 8.0e-7
|
446 |
+
iterations: 7900
|
447 |
+
min: 3.0e-7
|
448 |
+
warmup_t: 100
|
449 |
+
variable_loss_scaling:
|
450 |
+
default: 1
|
451 |
+
pl:
|
452 |
+
q: 0.6
|
453 |
+
t: 6
|
454 |
+
u: 0.8
|
455 |
+
v: 0.5
|
456 |
+
w: 0.001
|
457 |
+
z: 12
|
458 |
+
sfc:
|
459 |
+
sp: 10
|
460 |
+
10u: 0.5
|
461 |
+
10v: 0.5
|
462 |
+
100u: 0.1
|
463 |
+
100v: 0.1
|
464 |
+
2d: 0.5
|
465 |
+
tp: 0.025
|
466 |
+
cp: 0.0025
|
467 |
+
ro: 0.005
|
468 |
+
sf: 0.025
|
469 |
+
tcc: 0.1
|
470 |
+
mcc: 0.1
|
471 |
+
lcc: 0.1
|
472 |
+
hcc: 0.1
|
473 |
+
swvl2: 200
|
474 |
+
swvl1: 100
|
475 |
+
stl2: 10
|
476 |
+
stl1: 1
|
477 |
+
ssrd: 0.05
|
478 |
+
strd: 0.1
|
479 |
+
metrics: [z_500, t_850, u_850, v_850]
|
480 |
+
pressure_level_scaler:
|
481 |
+
_target_: anemoi.training.data.scaling.ReluPressureLevelScaler
|
482 |
+
minimum: 0.2
|
483 |
+
slope: 0.001
|