Graph Machine Learning
AnemoI
English
File size: 10,861 Bytes
9bc9286
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8320d87
9bc9286
 
 
 
 
 
 
 
 
 
 
8320d87
9bc9286
 
 
 
 
 
 
 
 
 
 
 
 
 
8320d87
9bc9286
 
 
 
 
 
 
 
 
 
 
 
6448a8a
9bc9286
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1220cb
9bc9286
 
 
 
 
 
 
 
 
e157335
 
 
 
 
 
 
 
9bc9286
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
data:
  format: zarr
  resolution: n320
  frequency: 6h
  timestep: 6h
  forcing:
    - cos_latitude
    - cos_longitude
    - sin_latitude
    - sin_longitude
    - cos_julian_day
    - cos_local_time
    - sin_julian_day
    - sin_local_time
    - insolation
    - lsm
    - sdor
    - slor
    - z
  diagnostic:
    - tp
    - cp
    - sf
    - tcc
    - hcc
    - lcc
    - mcc
    - ro
    - ssrd
    - strd
    - 100u
    - 100v
  remapped: null
  normalizer:
    default: mean-std
    remap:
      cp: tp
      sf: tp
    std:
      - tp
      - cp
      - sf
      - ro
      - tcw
      - ssrd
      - q_50
      - q_100
      - q_150
      - q_200
      - q_250
      - q_300
      - q_400
      - q_500
      - q_600
      - q_700
      - q_850
      - q_925
      - q_1000
    min-max: null
    max:
      - sdor
      - slor
      - z
    none:
      - cos_latitude
      - cos_longitude
      - sin_latitude
      - sin_longitude
      - cos_julian_day
      - cos_local_time
      - sin_julian_day
      - sin_local_time
      - insolation
      - lsm
      - tcc
      - mcc
      - hcc
      - lcc
      - swvl1
      - swvl2
  imputer:
    default: none
  remapper:
    default: none
  processors:
    normalizer:
      _target_: anemoi.models.preprocessing.normalizer.InputNormalizer
      _convert_: all
      config:
        default: mean-std
        remap:
          cp: tp
          sf: tp
        std:
          - tp
          - cp
          - sf
          - ro
          - tcw
          - ssrd
          - q_50
          - q_100
          - q_150
          - q_200
          - q_250
          - q_300
          - q_400
          - q_500
          - q_600
          - q_700
          - q_850
          - q_925
          - q_1000
        min-max: null
        max:
          - sdor
          - slor
          - z
        none:
          - cos_latitude
          - cos_longitude
          - sin_latitude
          - sin_longitude
          - cos_julian_day
          - cos_local_time
          - sin_julian_day
          - sin_local_time
          - insolation
          - lsm
          - tcc
          - mcc
          - hcc
          - lcc
          - swvl1
          - swvl2
  num_features: 115

dataloader:
  prefetch_factor: 2
  pin_memory: True
  read_group_size: 4
  num_workers:
    training: 4
    validation: 4
    test: 8
    predict: 8
  batch_size:
    training: 1
    validation: 1
    test: 4
    predict: 4
  limit_batches:
    training: null
    validation: 10
    test: 20
    predict: 20
  dataset: ${hardware.paths.data}/${hardware.files.dataset}
  land_dataset: ${hardware.paths.data}/${hardware.files.dataset_land}
  land_variables: [100u, 100v, swvl1, swvl2, stl1, stl2, tcc, lcc, mcc, hcc, sf, ro, strd, ssrd]
  training:
    dataset:
      - dataset: ${dataloader.dataset}
        start: null
        end: 2022
        frequency: ${data.frequency}
        drop: []
      - dataset: ${dataloader.land_dataset}
        start: null
        end: 2022
        frequency: ${data.frequency}
        select: ${dataloader.land_variables}
    start: null
    end: 2022
    drop: []
  validation:
    dataset:
      - dataset: ${dataloader.dataset}
        start: 2022
        end: 2022
        frequency: ${data.frequency}
        drop: []
      - dataset: ${dataloader.land_dataset}
        start: 2022
        end: 2022
        frequency: ${data.frequency}
        select: ${dataloader.land_variables}
    start: 2022
    end: 2022
    drop: []
  validation_rollout: 1

diagnostics:
  plot:
    asynchronous: False
    datashader: True
    frequency:
      batch: 750
      epoch: 10
    parameters: [tp]
    sample_idx: 0
    callbacks:
      - _target_: anemoi.training.diagnostics.callbacks.plot.PlotLoss
        parameter_groups:
          moisture: [tp, cp, tcw]
          sfc_wind: [10u, 10v]
      - _target_: anemoi.training.diagnostics.callbacks.plot.PlotSample
        sample_idx: 0
        per_sample: 6
        parameters: [tp]
        accumulation_levels_plot: [0, 0.05, 0.1, 0.25, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 7, 100]
        cmap_accumulation:
          - "#ffffff"
          - "#04e9e7"
          - "#019ff4"
          - "#0300f4"
          - "#02fd02"
          - "#01c501"
          - "#008e00"
          - "#fdf802"
          - "#e5bc00"
          - "#fd9500"
          - "#fd0000"
          - "#d40000"
          - "#bc0000"
          - "#f800fd"
        precip_and_related_fields: [tp, cp]
    enabled: True
    scatter: False
    mode: asyncio
  callbacks: {}
  benchmark_profiler:
    memory:
      enabled: True
      steps: 5
      warmup: 2
      extra_plots: False
      trace_rank0_only: False
    time:
      enabled: True
      verbose: False
    speed:
      enabled: True
    system:
      enabled: True
    model_summary:
      enabled: True
    snapshot:
      enabled: True
      steps: 4
      warmup: 0
  debug:
    anomaly_detection: False
  profiler: False
  enable_checkpointing: True
  checkpoint:
    every_n_minutes:
      save_frequency: 30
      num_models_saved: 3
    every_n_epochs:
      save_frequency: 1
      num_models_saved: 3
    every_n_train_steps:
      save_frequency: null
      num_models_saved: 0
  log:
    wandb:
      enabled: False
    tensorboard:
      enabled: False
    mlflow:
      enabled: False
    interval: 100
  enable_progress_bar: True
  print_memory_summary: False

hardware:
  paths:
    data: ${oc.decode:${oc.env:DATASETS_PATH}}
    output: ${oc.decode:${oc.env:OUTPUT_DIR}}
    logs:
      base: ${hardware.paths.output}/logs
      wandb: ${hardware.paths.output}/logs/wandb
      mlflow: ${hardware.paths.output}/logs/mlflow
      tensorboard: ${hardware.paths.output}/logs/tensorboard
    checkpoints: ${hardware.paths.output}/checkpoint
    plots: ${hardware.paths.output}/plots
    profiler: ${hardware.paths.output}/profiler
    graph: ${hardware.paths.output}/graphs
  files:
    dataset: aifs-ea-an-oper-0001-mars-n320-1979-2022-6h-v6.zarr
    dataset_land: aifs-ea-an-oper-0001-mars-n320-1979-2023-6h-v1-land.zarr
    graph: graph_enc_proc_dec_n320.pt
    checkpoint:
      every_n_epochs: aifs-by_epoch-epoch_{epoch:03d}-val_wmse_{val_wmse:.3e}
      every_n_train_steps: aifs-by_step-epoch_{epoch:03d}-step_{step:06d}
      every_n_minutes: aifs-by_time-epoch_{epoch:03d}-step_{step:06d}
    warm_start: null
  accelerator: auto
  num_gpus_per_node: 4
  num_nodes: 16
  num_gpus_per_model: 4

graph:
  overwrite: True
  data: data
  hidden: hidden
  nodes:
    data:
      node_builder:
        _target_: anemoi.graphs.nodes.ZarrDatasetNodes
        dataset: ${dataloader.dataset}
      attributes:
        area_weight:
          _target_: anemoi.graphs.nodes.attributes.AreaWeights
          norm: unit-max
    hidden:
      node_builder:
        _target_: anemoi.graphs.nodes.ReducedGaussianGridNodes
        grid: o96
  edges:
    - source_name: data
      target_name: hidden
      edge_builder:
        _target_: anemoi.graphs.edges.CutOffEdges
        cutoff_factor: 0.6
      attributes:
        edge_length:
          _target_: anemoi.graphs.edges.attributes.EdgeLength
          norm: unit-std
        edge_dirs:
          _target_: anemoi.graphs.edges.attributes.EdgeDirection
          norm: unit-std
    - source_name: hidden
      target_name: data
      edge_builder:
        _target_: anemoi.graphs.edges.KNNEdges
        num_nearest_neighbours: 3
      attributes:
        edge_length:
          _target_: anemoi.graphs.edges.attributes.EdgeLength
          norm: unit-std
        edge_dirs:
          _target_: anemoi.graphs.edges.attributes.EdgeDirection
          norm: unit-std

model:
  activation: GELU
  num_channels: 1024
  model:
    _target_: anemoi.models.models.encoder_processor_decoder.AnemoiModelEncProcDec
  processor:
    _target_: anemoi.models.layers.processor.TransformerProcessor
    _convert_: all
    activation: GELU
    num_layers: 16
    num_chunks: 2
    mlp_hidden_ratio: 4
    num_heads: 16
    window_size: 1120
    dropout_p: 0
  encoder:
    _target_: anemoi.models.layers.mapper.GraphTransformerForwardMapper
    _convert_: all
    trainable_size: 8
    sub_graph_edge_attributes: [edge_length, edge_dirs]
    activation: GELU
    num_chunks: 1
    mlp_hidden_ratio: 4
    num_heads: 16
  decoder:
    _target_: anemoi.models.layers.mapper.GraphTransformerBackwardMapper
    _convert_: all
    trainable_size: 8
    sub_graph_edge_attributes: [edge_length, edge_dirs]
    activation: GELU
    num_chunks: 1
    mlp_hidden_ratio: 4
    num_heads: 16
  trainable_parameters:
    data: 8
    hidden: 8
    data2hidden: 8
    hidden2data: 8
  attributes:
    edges: [edge_length, edge_dirs]
    nodes: []
  node_loss_weight: area_weight
  bounding:
    - _target_: anemoi.models.layers.bounding.ReluBounding
      variables:
        - tp
        - ro
        - tcw
        - ssrd
        - q_50
        - q_100
        - q_150
        - q_200
        - q_250
        - q_300
        - q_400
        - q_500
        - q_600
        - q_700
        - q_850
        - q_925
        - q_1000
    - _target_: anemoi.models.layers.bounding.HardtanhBounding
      variables: [tcc, swvl1, swvl2]
      min_val: 0
      max_val: 1
    - _target_: anemoi.models.layers.bounding.FractionBounding
      variables: [cp, sf]
      min_val: 0
      max_val: 1
      total_var: tp
    - _target_: anemoi.models.layers.bounding.FractionBounding
      variables: [lcc, mcc, hcc]
      min_val: 0
      max_val: 1
      total_var: tcc

training:
  run_id: null
  fork_run_id: null
  load_weights_only: null
  deterministic: False
  precision: 16-mixed
  multistep_input: 2
  accum_grad_batches: 1
  num_sanity_val_steps: 6
  gradient_clip:
    val: 32
    algorithm: value
  swa:
    enabled: False
    lr: 0.0001
  zero_optimizer: False
  training_loss:
    _target_: anemoi.training.losses.mse.WeightedMSELoss
    scalars: [variable, loss_weights_mask]
    ignore_nans: False
  loss_gradient_scaling: False
  validation_metrics:
    - _target_: anemoi.training.losses.mse.WeightedMSELoss
      scalars: []
      ignore_nans: True
  rollout:
    start: 1
    epoch_increment: 0
    max: 1
  max_epochs: null
  max_steps: 260000
  lr:
    rate: 0.00003125
    iterations: 260000
    min: 3.0e-7
  variable_loss_scaling:
    default: 1
    pl:
      q: 0.6
      t: 6
      u: 0.8
      v: 0.5
      w: 0.001
      z: 12
    sfc:
      sp: 10
      10u: 0.5
      10v: 0.5
      100u: 0.1
      100v: 0.1
      2d: 0.5
      tp: 0.025
      cp: 0.0025
      ro: 0.005
      sf: 0.025
      tcc: 0.1
      mcc: 0.1
      lcc: 0.1
      hcc: 0.1
      swvl2: 200
      swvl1: 100
      stl2: 10
      stl1: 1
      ssrd: 0.05
      strd: 0.1
  metrics: [z_500, t_850, u_850, v_850]
  pressure_level_scaler:
    _target_: anemoi.training.data.scaling.ReluPressureLevelScaler
    minimum: 0.2
    slope: 0.001