File size: 1,945 Bytes
c3a3c82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
language:
- en
license: apache-2.0
base_model: openai/whisper-base.en
tags:
- nyansapo_ai-asr-leaderboard
- generated_from_trainer
datasets:
- NyansapoAI/azure-dataset
metrics:
- wer
model-index:
- name: whisper-base-bungoma.en
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Azure-dataset
type: NyansapoAI/azure-dataset
args: 'split: test'
metrics:
- name: Wer
type: wer
value: 25.28041415012942
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-base-bungoma.en
This model is a fine-tuned version of [openai/whisper-base.en](https://huggingface.co./openai/whisper-base.en) on the Azure-dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0636
- Wer: 25.2804
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 250
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.7399 | 1.38 | 250 | 0.2390 | 29.3356 |
| 0.2829 | 2.76 | 500 | 0.0774 | 21.8292 |
| 0.1573 | 4.14 | 750 | 0.0921 | 22.8645 |
| 0.1373 | 5.52 | 1000 | 0.0636 | 25.2804 |
### Framework versions
- Transformers 4.39.1
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.15.2
|