update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
base_model: dvs/videomae-base-finetuned-movienet
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: videomae-base-finetuned-movienet-finetuned-movienet-more
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# videomae-base-finetuned-movienet-finetuned-movienet-more
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [dvs/videomae-base-finetuned-movienet](https://huggingface.co/dvs/videomae-base-finetuned-movienet) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.6822
|
21 |
+
- Accuracy: 0.7917
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 5e-05
|
41 |
+
- train_batch_size: 8
|
42 |
+
- eval_batch_size: 8
|
43 |
+
- seed: 42
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- lr_scheduler_warmup_ratio: 0.1
|
47 |
+
- training_steps: 1480
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
52 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
53 |
+
| 0.4977 | 0.13 | 186 | 0.8210 | 0.7234 |
|
54 |
+
| 0.3974 | 1.13 | 372 | 0.6322 | 0.8085 |
|
55 |
+
| 0.1101 | 2.13 | 558 | 1.0522 | 0.75 |
|
56 |
+
| 0.1618 | 3.13 | 744 | 0.9185 | 0.7872 |
|
57 |
+
| 0.0052 | 4.13 | 930 | 0.8586 | 0.8085 |
|
58 |
+
| 0.0013 | 5.13 | 1116 | 1.0029 | 0.7926 |
|
59 |
+
| 0.0044 | 6.13 | 1302 | 1.0400 | 0.7872 |
|
60 |
+
| 0.0008 | 7.12 | 1480 | 1.0018 | 0.7979 |
|
61 |
+
|
62 |
+
|
63 |
+
### Framework versions
|
64 |
+
|
65 |
+
- Transformers 4.31.0
|
66 |
+
- Pytorch 2.0.1+cu118
|
67 |
+
- Datasets 2.14.1
|
68 |
+
- Tokenizers 0.13.3
|