dvijay commited on
Commit
d7f951f
·
verified ·
1 Parent(s): e220ac7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +137 -198
README.md CHANGED
@@ -1,201 +1,140 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
-
201
-
 
1
  ---
2
+ license: apache-2.0
3
+ library_name: peft
4
+ tags:
5
+ - generated_from_trainer
6
+ base_model: mistralai/Mistral-7B-v0.1
7
+ model-index:
8
+ - name: qlora-out
9
+ results: []
10
  ---
11
 
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.4.0`
19
+ ```yaml
20
+ base_model: mistralai/Mistral-7B-v0.1
21
+ model_type: MistralForCausalLM
22
+ tokenizer_type: LlamaTokenizer
23
+
24
+ load_in_8bit: false
25
+ load_in_4bit: true
26
+ strict: false
27
+
28
+ datasets:
29
+ - path: mhenrichsen/alpaca_2k_test
30
+ type: alpaca
31
+ dataset_prepared_path: last_run_prepared
32
+ val_set_size: 0.1
33
+ output_dir: ./qlora-out
34
+
35
+ adapter: qlora
36
+ lora_model_dir:
37
+
38
+ sequence_len: 8192
39
+ sample_packing: true
40
+ pad_to_sequence_len: true
41
+
42
+ lora_r: 32
43
+ lora_alpha: 16
44
+ lora_dropout: 0.05
45
+ lora_target_linear: true
46
+ lora_fan_in_fan_out:
47
+ lora_target_modules:
48
+ - gate_proj
49
+ - down_proj
50
+ - up_proj
51
+ - q_proj
52
+ - v_proj
53
+ - k_proj
54
+ - o_proj
55
+
56
+ wandb_project: axolotl
57
+ wandb_entity:
58
+ wandb_watch:
59
+ wandb_name:
60
+ wandb_log_model:
61
+
62
+ gradient_accumulation_steps: 4
63
+ micro_batch_size: 1
64
+ num_epochs: 3
65
+ optimizer: adamw_bnb_8bit
66
+ lr_scheduler: cosine
67
+ learning_rate: 0.0002
68
+
69
+ train_on_inputs: false
70
+ group_by_length: false
71
+ bf16: auto
72
+ fp16:
73
+ tf32: false
74
+
75
+ gradient_checkpointing: true
76
+ early_stopping_patience:
77
+ resume_from_checkpoint:
78
+ local_rank:
79
+ logging_steps: 1
80
+ xformers_attention:
81
+ flash_attention: true
82
+
83
+ loss_watchdog_threshold: 5.0
84
+ loss_watchdog_patience: 3
85
+
86
+ warmup_steps: 10
87
+ evals_per_epoch: 4
88
+ eval_table_size:
89
+ eval_max_new_tokens: 128
90
+ saves_per_epoch: 1
91
+ debug:
92
+ deepspeed:
93
+ weight_decay: 0.0
94
+ fsdp:
95
+ fsdp_config:
96
+ special_tokens:
97
+ bos_token: "<s>"
98
+ eos_token: "</s>"
99
+ unk_token: "<unk>"
100
+
101
+ ```
102
+
103
+ </details><br>
104
+
105
+ # mistral-alpaca2k-3e
106
+
107
+ This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the mhenrichsen/alpaca_2k_test dataset.
108
+ It achieves the following results on the evaluation set:
109
+ - Loss: 0.8586
110
+
111
+ ### Training hyperparameters
112
+
113
+ The following hyperparameters were used during training:
114
+ - learning_rate: 0.0002
115
+ - train_batch_size: 1
116
+ - eval_batch_size: 1
117
+ - seed: 42
118
+ - gradient_accumulation_steps: 4
119
+ - total_train_batch_size: 4
120
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
121
+ - lr_scheduler_type: cosine
122
+ - lr_scheduler_warmup_steps: 10
123
+ - num_epochs: 3
124
+
125
+ ### Training results
126
+
127
+ | Training Loss | Epoch | Step | Validation Loss |
128
+ |:-------------:|:-----:|:----:|:---------------:|
129
+ | 0.8799 | 0.98 | 11 | 0.8622 |
130
+ | 0.7407 | 2.0 | 23 | 0.8522 |
131
+ | 0.7064 | 2.84 | 33 | 0.8586 |
132
+
133
+
134
+ ### Framework versions
135
+
136
+ - PEFT 0.8.2
137
+ - Transformers 4.38.1
138
+ - Pytorch 2.1.2+cu118
139
+ - Datasets 2.17.0
140
+ - Tokenizers 0.15.0