Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -1.54 +/- 0.36
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c69fdbbb89d8f6576a5f65dd9456647b9e6c42f11b933b8259a89f6dda9eef8c
|
3 |
+
size 108142
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7efb069b53a0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7efb069b3640>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1681391039807743253,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA4YjZPiGxJbxXJBE/4YjZPiGxJbxXJBE/4YjZPiGxJbxXJBE/4YjZPiGxJbxXJBE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAb0UjPxOgvL/gl4U+38TCP/uapj7dU6g/3PemPx5k573TEYk/WZZIv3mQnL88U5U/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADhiNk+IbElvFckET+NPtK8P043uxMspTjhiNk+IbElvFckET+NPtK8P043uxMspTjhiNk+IbElvFckET+NPtK8P043uxMspTjhiNk+IbElvFckET+NPtK8P043uxMspTiUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[ 0.42487243 -0.01011303 0.56696075]\n [ 0.42487243 -0.01011303 0.56696075]\n [ 0.42487243 -0.01011303 0.56696075]\n [ 0.42487243 -0.01011303 0.56696075]]",
|
38 |
+
"desired_goal": "[[ 0.6377782 -1.4736351 0.26092434]\n [ 1.521633 0.32540116 1.3150593 ]\n [ 1.3044391 -0.11298393 1.0708565 ]\n [-0.7835441 -1.223159 1.1666026 ]]",
|
39 |
+
"observation": "[[ 4.2487243e-01 -1.0113032e-02 5.6696075e-01 -2.5664592e-02\n -2.7970222e-03 7.8760226e-05]\n [ 4.2487243e-01 -1.0113032e-02 5.6696075e-01 -2.5664592e-02\n -2.7970222e-03 7.8760226e-05]\n [ 4.2487243e-01 -1.0113032e-02 5.6696075e-01 -2.5664592e-02\n -2.7970222e-03 7.8760226e-05]\n [ 4.2487243e-01 -1.0113032e-02 5.6696075e-01 -2.5664592e-02\n -2.7970222e-03 7.8760226e-05]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAb4/hvb6xHDyyFEg+Q5G2PH+6tLww1Io+f4SNOgdwnL2PglY+vW0NPpApKj2pICw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[-0.11013686 0.00956386 0.19539145]\n [ 0.02228606 -0.02206158 0.2711501 ]\n [ 0.00107969 -0.07638555 0.20948242]\n [ 0.13811393 0.04154354 0.16809334]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIgEV+/RBb/b+UhpRSlIwBbJRLMowBdJRHQKXjKkOZssR1fZQoaAZoCWgPQwiJmX0eozzxv5SGlFKUaBVLMmgWR0Cl4tPVurIYdX2UKGgGaAloD0MI+yMMA5Yc/r+UhpRSlGgVSzJoFkdApeJ72USqVHV9lChoBmgJaA9DCJ8561OOyfO/lIaUUpRoFUsyaBZHQKXiIGIKtxN1fZQoaAZoCWgPQwiZucDlseb0v5SGlFKUaBVLMmgWR0Cl5CkCmuTzdX2UKGgGaAloD0MI6/1GO254+b+UhpRSlGgVSzJoFkdApePSjpLVWnV9lChoBmgJaA9DCCjXFMjsbPK/lIaUUpRoFUsyaBZHQKXjenxaxHJ1fZQoaAZoCWgPQwhPle8ZiRD9v5SGlFKUaBVLMmgWR0Cl4x+Y2Kl6dX2UKGgGaAloD0MIkSxgArfu8L+UhpRSlGgVSzJoFkdApeU4jbBXS3V9lChoBmgJaA9DCCEdHsL46fK/lIaUUpRoFUsyaBZHQKXk4f7Jnxt1fZQoaAZoCWgPQwi5UWStodT7v5SGlFKUaBVLMmgWR0Cl5IoWxhUjdX2UKGgGaAloD0MIHR8tzhim/7+UhpRSlGgVSzJoFkdApeQutwJgLXV9lChoBmgJaA9DCOlfksoU8/m/lIaUUpRoFUsyaBZHQKXmzlK9PDZ1fZQoaAZoCWgPQwijzXFuE+71v5SGlFKUaBVLMmgWR0Cl5niuloDgdX2UKGgGaAloD0MIHy457pSO+b+UhpRSlGgVSzJoFkdApeYhc3VConV9lChoBmgJaA9DCFteud42U/e/lIaUUpRoFUsyaBZHQKXlxtALRa51fZQoaAZoCWgPQwgkRWRYxZvyv5SGlFKUaBVLMmgWR0Cl6HWhZha1dX2UKGgGaAloD0MIkEyHTs+787+UhpRSlGgVSzJoFkdApeggNRWLgnV9lChoBmgJaA9DCDLLngQ2p/S/lIaUUpRoFUsyaBZHQKXnyOc2BJ91fZQoaAZoCWgPQwjrAfOQKV/4v5SGlFKUaBVLMmgWR0Cl525eZ5RkdX2UKGgGaAloD0MInSrfMxKh8r+UhpRSlGgVSzJoFkdApeonHim2s3V9lChoBmgJaA9DCMl1U8pr5fW/lIaUUpRoFUsyaBZHQKXp0ZuQ6p51fZQoaAZoCWgPQwj9iF+xhgvxv5SGlFKUaBVLMmgWR0Cl6XqS5iEydX2UKGgGaAloD0MIJ77aUZzj97+UhpRSlGgVSzJoFkdApekfvUjLS3V9lChoBmgJaA9DCJq2f2WlifS/lIaUUpRoFUsyaBZHQKXr2kBS1md1fZQoaAZoCWgPQwhM3ZVdMLj1v5SGlFKUaBVLMmgWR0Cl64S5qdpZdX2UKGgGaAloD0MIO44fKo2Y8b+UhpRSlGgVSzJoFkdApestlAeJYXV9lChoBmgJaA9DCHzvb9Beffi/lIaUUpRoFUsyaBZHQKXq0ohIOH51fZQoaAZoCWgPQwgiwyreyPz3v5SGlFKUaBVLMmgWR0Cl7aQB5ooNdX2UKGgGaAloD0MI7gp9sIwN97+UhpRSlGgVSzJoFkdApe1OVopQUHV9lChoBmgJaA9DCLa93ZIc8Pm/lIaUUpRoFUsyaBZHQKXs9xlxwQ11fZQoaAZoCWgPQwhBDkqYafv3v5SGlFKUaBVLMmgWR0Cl7JyYG+sYdX2UKGgGaAloD0MIfVhv1AoT/b+UhpRSlGgVSzJoFkdApe8/+uNgjXV9lChoBmgJaA9DCBISaRt/4ve/lIaUUpRoFUsyaBZHQKXu6Yj0L+h1fZQoaAZoCWgPQwiwHYzYJ4D0v5SGlFKUaBVLMmgWR0Cl7pJMYdhidX2UKGgGaAloD0MIk1FlGHcjAsCUhpRSlGgVSzJoFkdApe42zSkTH3V9lChoBmgJaA9DCGAi3jr/9va/lIaUUpRoFUsyaBZHQKXwRbRF7Up1fZQoaAZoCWgPQwgpXmVtUzwCwJSGlFKUaBVLMmgWR0Cl7++CbtqpdX2UKGgGaAloD0MIJF8JpMSu97+UhpRSlGgVSzJoFkdApe+X2M85j3V9lChoBmgJaA9DCEut9xvt+PK/lIaUUpRoFUsyaBZHQKXvPHo5ggJ1fZQoaAZoCWgPQwgUdlH0wMfwv5SGlFKUaBVLMmgWR0Cl8Ui9RJmNdX2UKGgGaAloD0MI1/Z2S3LA/r+UhpRSlGgVSzJoFkdApfDyLdepoHV9lChoBmgJaA9DCMMtH0lJz/u/lIaUUpRoFUsyaBZHQKXwme2/i5x1fZQoaAZoCWgPQwjWNVoO9ND3v5SGlFKUaBVLMmgWR0Cl8D5VOsT4dX2UKGgGaAloD0MI8l61MuG3AcCUhpRSlGgVSzJoFkdApfJJfhMrVnV9lChoBmgJaA9DCM2VQbXBSfa/lIaUUpRoFUsyaBZHQKXx8yj59E11fZQoaAZoCWgPQwjejnBa8KL9v5SGlFKUaBVLMmgWR0Cl8Zsm4RVZdX2UKGgGaAloD0MIbkxPWOIB+b+UhpRSlGgVSzJoFkdApfE/sPatcXV9lChoBmgJaA9DCNC2mnXG9/2/lIaUUpRoFUsyaBZHQKXzUPZqVQh1fZQoaAZoCWgPQwgLt3wkJX39v5SGlFKUaBVLMmgWR0Cl8vrA57w8dX2UKGgGaAloD0MIYMsr19tm97+UhpRSlGgVSzJoFkdApfKizVtoBnV9lChoBmgJaA9DCITXLm04rPq/lIaUUpRoFUsyaBZHQKXyR0HyEtd1fZQoaAZoCWgPQwg0go3r33X9v5SGlFKUaBVLMmgWR0Cl9E/uTibVdX2UKGgGaAloD0MIFMstrYbE/7+UhpRSlGgVSzJoFkdApfP5h6SkkHV9lChoBmgJaA9DCLOxEvOspPi/lIaUUpRoFUsyaBZHQKXzoWP91lp1fZQoaAZoCWgPQwhZxLDDmPT3v5SGlFKUaBVLMmgWR0Cl80X++/QCdX2UKGgGaAloD0MIt3u5T46C/L+UhpRSlGgVSzJoFkdApfVQ/Vy3kXV9lChoBmgJaA9DCH1dhv90A/6/lIaUUpRoFUsyaBZHQKX0+pvxYq51fZQoaAZoCWgPQwgyychZ2FP3v5SGlFKUaBVLMmgWR0Cl9KJ5eJHidX2UKGgGaAloD0MIkX2QZcHE+b+UhpRSlGgVSzJoFkdApfRGyquKXXV9lChoBmgJaA9DCN4dGavNf/m/lIaUUpRoFUsyaBZHQKX2V2zOX3R1fZQoaAZoCWgPQwgY0XZM3VX6v5SGlFKUaBVLMmgWR0Cl9gENFz+4dX2UKGgGaAloD0MIvYv34/aLBcCUhpRSlGgVSzJoFkdApfWow22oenV9lChoBmgJaA9DCGFwzR39r+6/lIaUUpRoFUsyaBZHQKX1TWCEpRZ1fZQoaAZoCWgPQwhOZOYCl4f/v5SGlFKUaBVLMmgWR0Cl915xR2r5dX2UKGgGaAloD0MI5xn7ko1H+L+UhpRSlGgVSzJoFkdApfcILJCBw3V9lChoBmgJaA9DCMb9R6ZDhwLAlIaUUpRoFUsyaBZHQKX2r+sHSnd1fZQoaAZoCWgPQwi8B+i+nBkAwJSGlFKUaBVLMmgWR0Cl9lSQgcLjdX2UKGgGaAloD0MIuW+1TlwO+7+UhpRSlGgVSzJoFkdApfht/WlMy3V9lChoBmgJaA9DCPZ8zXLZqALAlIaUUpRoFUsyaBZHQKX4F3/Pw/h1fZQoaAZoCWgPQwgEyqZc4d3wv5SGlFKUaBVLMmgWR0Cl98AmJFb3dX2UKGgGaAloD0MIeev822U/AMCUhpRSlGgVSzJoFkdApfdkcOskp3V9lChoBmgJaA9DCOAqTyDs1PK/lIaUUpRoFUsyaBZHQKX5b2RJVbR1fZQoaAZoCWgPQwgwLlVpi2v8v5SGlFKUaBVLMmgWR0Cl+Rj2SMcZdX2UKGgGaAloD0MI0T3rGi1H+L+UhpRSlGgVSzJoFkdApfjA/X5FgHV9lChoBmgJaA9DCIcYr3lVp/i/lIaUUpRoFUsyaBZHQKX4ZZGKAJ91fZQoaAZoCWgPQwi5xJEHIovyv5SGlFKUaBVLMmgWR0Cl+nixeLNwdX2UKGgGaAloD0MIUPwYc9dS9r+UhpRSlGgVSzJoFkdApfoiVGCqZXV9lChoBmgJaA9DCJn091J40Pa/lIaUUpRoFUsyaBZHQKX5ytCiRGN1fZQoaAZoCWgPQwgIrvIEwi4AwJSGlFKUaBVLMmgWR0Cl+W9wWFewdX2UKGgGaAloD0MIinYVUn5S+7+UhpRSlGgVSzJoFkdApft6sCDEnHV9lChoBmgJaA9DCD56w33kFv2/lIaUUpRoFUsyaBZHQKX7JEx7AtZ1fZQoaAZoCWgPQwhf7pOjAJH7v5SGlFKUaBVLMmgWR0Cl+sxGMGX5dX2UKGgGaAloD0MIcLTjht+N87+UhpRSlGgVSzJoFkdApfpw0/GEPHV9lChoBmgJaA9DCBcq/1pe+f6/lIaUUpRoFUsyaBZHQKX8ecghbGF1fZQoaAZoCWgPQwgrTUpBt9f4v5SGlFKUaBVLMmgWR0Cl/CMcZLqVdX2UKGgGaAloD0MISN+kaVD09r+UhpRSlGgVSzJoFkdApfvLDXOGCnV9lChoBmgJaA9DCJm6K7tgsADAlIaUUpRoFUsyaBZHQKX7b4W1twd1fZQoaAZoCWgPQwju0RvuI3f5v5SGlFKUaBVLMmgWR0Cl/XYKYzBRdX2UKGgGaAloD0MIdHy0OGOY97+UhpRSlGgVSzJoFkdApf0fn4fwJHV9lChoBmgJaA9DCJ8ih4ib0/a/lIaUUpRoFUsyaBZHQKX8x5gw4851fZQoaAZoCWgPQwiT36KTpVb4v5SGlFKUaBVLMmgWR0Cl/GwXyiEhdX2UKGgGaAloD0MIqG+Z02Wx+7+UhpRSlGgVSzJoFkdApf50M1CPZXV9lChoBmgJaA9DCGRYxRuZx/a/lIaUUpRoFUsyaBZHQKX+HetSydF1fZQoaAZoCWgPQwgRww5j0t8CwJSGlFKUaBVLMmgWR0Cl/cXmFJxvdX2UKGgGaAloD0MIwVQzaymg+b+UhpRSlGgVSzJoFkdApf1qgsbvPXV9lChoBmgJaA9DCIhLjjulQ/a/lIaUUpRoFUsyaBZHQKX/eDkELYx1fZQoaAZoCWgPQwhyFYvfFBb7v5SGlFKUaBVLMmgWR0Cl/yHOryUcdX2UKGgGaAloD0MIUFJgAUwZ9b+UhpRSlGgVSzJoFkdApf7Js9B8hXV9lChoBmgJaA9DCJ+OxwxUxv6/lIaUUpRoFUsyaBZHQKX+blDF6zF1ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 50000,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:59da5694b4bc36ba06293e6deb9f16f7afea906056468383ccf4757a08f8e342
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1bf237dc871e06164e304c30c258a91ce8627c3d0576b3c9d0f584526af834c8
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7efb069b53a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7efb069b3640>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681391039807743253, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA4YjZPiGxJbxXJBE/4YjZPiGxJbxXJBE/4YjZPiGxJbxXJBE/4YjZPiGxJbxXJBE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAb0UjPxOgvL/gl4U+38TCP/uapj7dU6g/3PemPx5k573TEYk/WZZIv3mQnL88U5U/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADhiNk+IbElvFckET+NPtK8P043uxMspTjhiNk+IbElvFckET+NPtK8P043uxMspTjhiNk+IbElvFckET+NPtK8P043uxMspTjhiNk+IbElvFckET+NPtK8P043uxMspTiUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.42487243 -0.01011303 0.56696075]\n [ 0.42487243 -0.01011303 0.56696075]\n [ 0.42487243 -0.01011303 0.56696075]\n [ 0.42487243 -0.01011303 0.56696075]]", "desired_goal": "[[ 0.6377782 -1.4736351 0.26092434]\n [ 1.521633 0.32540116 1.3150593 ]\n [ 1.3044391 -0.11298393 1.0708565 ]\n [-0.7835441 -1.223159 1.1666026 ]]", "observation": "[[ 4.2487243e-01 -1.0113032e-02 5.6696075e-01 -2.5664592e-02\n -2.7970222e-03 7.8760226e-05]\n [ 4.2487243e-01 -1.0113032e-02 5.6696075e-01 -2.5664592e-02\n -2.7970222e-03 7.8760226e-05]\n [ 4.2487243e-01 -1.0113032e-02 5.6696075e-01 -2.5664592e-02\n -2.7970222e-03 7.8760226e-05]\n [ 4.2487243e-01 -1.0113032e-02 5.6696075e-01 -2.5664592e-02\n -2.7970222e-03 7.8760226e-05]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAb4/hvb6xHDyyFEg+Q5G2PH+6tLww1Io+f4SNOgdwnL2PglY+vW0NPpApKj2pICw+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.11013686 0.00956386 0.19539145]\n [ 0.02228606 -0.02206158 0.2711501 ]\n [ 0.00107969 -0.07638555 0.20948242]\n [ 0.13811393 0.04154354 0.16809334]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIgEV+/RBb/b+UhpRSlIwBbJRLMowBdJRHQKXjKkOZssR1fZQoaAZoCWgPQwiJmX0eozzxv5SGlFKUaBVLMmgWR0Cl4tPVurIYdX2UKGgGaAloD0MI+yMMA5Yc/r+UhpRSlGgVSzJoFkdApeJ72USqVHV9lChoBmgJaA9DCJ8561OOyfO/lIaUUpRoFUsyaBZHQKXiIGIKtxN1fZQoaAZoCWgPQwiZucDlseb0v5SGlFKUaBVLMmgWR0Cl5CkCmuTzdX2UKGgGaAloD0MI6/1GO254+b+UhpRSlGgVSzJoFkdApePSjpLVWnV9lChoBmgJaA9DCCjXFMjsbPK/lIaUUpRoFUsyaBZHQKXjenxaxHJ1fZQoaAZoCWgPQwhPle8ZiRD9v5SGlFKUaBVLMmgWR0Cl4x+Y2Kl6dX2UKGgGaAloD0MIkSxgArfu8L+UhpRSlGgVSzJoFkdApeU4jbBXS3V9lChoBmgJaA9DCCEdHsL46fK/lIaUUpRoFUsyaBZHQKXk4f7Jnxt1fZQoaAZoCWgPQwi5UWStodT7v5SGlFKUaBVLMmgWR0Cl5IoWxhUjdX2UKGgGaAloD0MIHR8tzhim/7+UhpRSlGgVSzJoFkdApeQutwJgLXV9lChoBmgJaA9DCOlfksoU8/m/lIaUUpRoFUsyaBZHQKXmzlK9PDZ1fZQoaAZoCWgPQwijzXFuE+71v5SGlFKUaBVLMmgWR0Cl5niuloDgdX2UKGgGaAloD0MIHy457pSO+b+UhpRSlGgVSzJoFkdApeYhc3VConV9lChoBmgJaA9DCFteud42U/e/lIaUUpRoFUsyaBZHQKXlxtALRa51fZQoaAZoCWgPQwgkRWRYxZvyv5SGlFKUaBVLMmgWR0Cl6HWhZha1dX2UKGgGaAloD0MIkEyHTs+787+UhpRSlGgVSzJoFkdApeggNRWLgnV9lChoBmgJaA9DCDLLngQ2p/S/lIaUUpRoFUsyaBZHQKXnyOc2BJ91fZQoaAZoCWgPQwjrAfOQKV/4v5SGlFKUaBVLMmgWR0Cl525eZ5RkdX2UKGgGaAloD0MInSrfMxKh8r+UhpRSlGgVSzJoFkdApeonHim2s3V9lChoBmgJaA9DCMl1U8pr5fW/lIaUUpRoFUsyaBZHQKXp0ZuQ6p51fZQoaAZoCWgPQwj9iF+xhgvxv5SGlFKUaBVLMmgWR0Cl6XqS5iEydX2UKGgGaAloD0MIJ77aUZzj97+UhpRSlGgVSzJoFkdApekfvUjLS3V9lChoBmgJaA9DCJq2f2WlifS/lIaUUpRoFUsyaBZHQKXr2kBS1md1fZQoaAZoCWgPQwhM3ZVdMLj1v5SGlFKUaBVLMmgWR0Cl64S5qdpZdX2UKGgGaAloD0MIO44fKo2Y8b+UhpRSlGgVSzJoFkdApestlAeJYXV9lChoBmgJaA9DCHzvb9Beffi/lIaUUpRoFUsyaBZHQKXq0ohIOH51fZQoaAZoCWgPQwgiwyreyPz3v5SGlFKUaBVLMmgWR0Cl7aQB5ooNdX2UKGgGaAloD0MI7gp9sIwN97+UhpRSlGgVSzJoFkdApe1OVopQUHV9lChoBmgJaA9DCLa93ZIc8Pm/lIaUUpRoFUsyaBZHQKXs9xlxwQ11fZQoaAZoCWgPQwhBDkqYafv3v5SGlFKUaBVLMmgWR0Cl7JyYG+sYdX2UKGgGaAloD0MIfVhv1AoT/b+UhpRSlGgVSzJoFkdApe8/+uNgjXV9lChoBmgJaA9DCBISaRt/4ve/lIaUUpRoFUsyaBZHQKXu6Yj0L+h1fZQoaAZoCWgPQwiwHYzYJ4D0v5SGlFKUaBVLMmgWR0Cl7pJMYdhidX2UKGgGaAloD0MIk1FlGHcjAsCUhpRSlGgVSzJoFkdApe42zSkTH3V9lChoBmgJaA9DCGAi3jr/9va/lIaUUpRoFUsyaBZHQKXwRbRF7Up1fZQoaAZoCWgPQwgpXmVtUzwCwJSGlFKUaBVLMmgWR0Cl7++CbtqpdX2UKGgGaAloD0MIJF8JpMSu97+UhpRSlGgVSzJoFkdApe+X2M85j3V9lChoBmgJaA9DCEut9xvt+PK/lIaUUpRoFUsyaBZHQKXvPHo5ggJ1fZQoaAZoCWgPQwgUdlH0wMfwv5SGlFKUaBVLMmgWR0Cl8Ui9RJmNdX2UKGgGaAloD0MI1/Z2S3LA/r+UhpRSlGgVSzJoFkdApfDyLdepoHV9lChoBmgJaA9DCMMtH0lJz/u/lIaUUpRoFUsyaBZHQKXwme2/i5x1fZQoaAZoCWgPQwjWNVoO9ND3v5SGlFKUaBVLMmgWR0Cl8D5VOsT4dX2UKGgGaAloD0MI8l61MuG3AcCUhpRSlGgVSzJoFkdApfJJfhMrVnV9lChoBmgJaA9DCM2VQbXBSfa/lIaUUpRoFUsyaBZHQKXx8yj59E11fZQoaAZoCWgPQwjejnBa8KL9v5SGlFKUaBVLMmgWR0Cl8Zsm4RVZdX2UKGgGaAloD0MIbkxPWOIB+b+UhpRSlGgVSzJoFkdApfE/sPatcXV9lChoBmgJaA9DCNC2mnXG9/2/lIaUUpRoFUsyaBZHQKXzUPZqVQh1fZQoaAZoCWgPQwgLt3wkJX39v5SGlFKUaBVLMmgWR0Cl8vrA57w8dX2UKGgGaAloD0MIYMsr19tm97+UhpRSlGgVSzJoFkdApfKizVtoBnV9lChoBmgJaA9DCITXLm04rPq/lIaUUpRoFUsyaBZHQKXyR0HyEtd1fZQoaAZoCWgPQwg0go3r33X9v5SGlFKUaBVLMmgWR0Cl9E/uTibVdX2UKGgGaAloD0MIFMstrYbE/7+UhpRSlGgVSzJoFkdApfP5h6SkkHV9lChoBmgJaA9DCLOxEvOspPi/lIaUUpRoFUsyaBZHQKXzoWP91lp1fZQoaAZoCWgPQwhZxLDDmPT3v5SGlFKUaBVLMmgWR0Cl80X++/QCdX2UKGgGaAloD0MIt3u5T46C/L+UhpRSlGgVSzJoFkdApfVQ/Vy3kXV9lChoBmgJaA9DCH1dhv90A/6/lIaUUpRoFUsyaBZHQKX0+pvxYq51fZQoaAZoCWgPQwgyychZ2FP3v5SGlFKUaBVLMmgWR0Cl9KJ5eJHidX2UKGgGaAloD0MIkX2QZcHE+b+UhpRSlGgVSzJoFkdApfRGyquKXXV9lChoBmgJaA9DCN4dGavNf/m/lIaUUpRoFUsyaBZHQKX2V2zOX3R1fZQoaAZoCWgPQwgY0XZM3VX6v5SGlFKUaBVLMmgWR0Cl9gENFz+4dX2UKGgGaAloD0MIvYv34/aLBcCUhpRSlGgVSzJoFkdApfWow22oenV9lChoBmgJaA9DCGFwzR39r+6/lIaUUpRoFUsyaBZHQKX1TWCEpRZ1fZQoaAZoCWgPQwhOZOYCl4f/v5SGlFKUaBVLMmgWR0Cl915xR2r5dX2UKGgGaAloD0MI5xn7ko1H+L+UhpRSlGgVSzJoFkdApfcILJCBw3V9lChoBmgJaA9DCMb9R6ZDhwLAlIaUUpRoFUsyaBZHQKX2r+sHSnd1fZQoaAZoCWgPQwi8B+i+nBkAwJSGlFKUaBVLMmgWR0Cl9lSQgcLjdX2UKGgGaAloD0MIuW+1TlwO+7+UhpRSlGgVSzJoFkdApfht/WlMy3V9lChoBmgJaA9DCPZ8zXLZqALAlIaUUpRoFUsyaBZHQKX4F3/Pw/h1fZQoaAZoCWgPQwgEyqZc4d3wv5SGlFKUaBVLMmgWR0Cl98AmJFb3dX2UKGgGaAloD0MIeev822U/AMCUhpRSlGgVSzJoFkdApfdkcOskp3V9lChoBmgJaA9DCOAqTyDs1PK/lIaUUpRoFUsyaBZHQKX5b2RJVbR1fZQoaAZoCWgPQwgwLlVpi2v8v5SGlFKUaBVLMmgWR0Cl+Rj2SMcZdX2UKGgGaAloD0MI0T3rGi1H+L+UhpRSlGgVSzJoFkdApfjA/X5FgHV9lChoBmgJaA9DCIcYr3lVp/i/lIaUUpRoFUsyaBZHQKX4ZZGKAJ91fZQoaAZoCWgPQwi5xJEHIovyv5SGlFKUaBVLMmgWR0Cl+nixeLNwdX2UKGgGaAloD0MIUPwYc9dS9r+UhpRSlGgVSzJoFkdApfoiVGCqZXV9lChoBmgJaA9DCJn091J40Pa/lIaUUpRoFUsyaBZHQKX5ytCiRGN1fZQoaAZoCWgPQwgIrvIEwi4AwJSGlFKUaBVLMmgWR0Cl+W9wWFewdX2UKGgGaAloD0MIinYVUn5S+7+UhpRSlGgVSzJoFkdApft6sCDEnHV9lChoBmgJaA9DCD56w33kFv2/lIaUUpRoFUsyaBZHQKX7JEx7AtZ1fZQoaAZoCWgPQwhf7pOjAJH7v5SGlFKUaBVLMmgWR0Cl+sxGMGX5dX2UKGgGaAloD0MIcLTjht+N87+UhpRSlGgVSzJoFkdApfpw0/GEPHV9lChoBmgJaA9DCBcq/1pe+f6/lIaUUpRoFUsyaBZHQKX8ecghbGF1fZQoaAZoCWgPQwgrTUpBt9f4v5SGlFKUaBVLMmgWR0Cl/CMcZLqVdX2UKGgGaAloD0MISN+kaVD09r+UhpRSlGgVSzJoFkdApfvLDXOGCnV9lChoBmgJaA9DCJm6K7tgsADAlIaUUpRoFUsyaBZHQKX7b4W1twd1fZQoaAZoCWgPQwju0RvuI3f5v5SGlFKUaBVLMmgWR0Cl/XYKYzBRdX2UKGgGaAloD0MIdHy0OGOY97+UhpRSlGgVSzJoFkdApf0fn4fwJHV9lChoBmgJaA9DCJ8ih4ib0/a/lIaUUpRoFUsyaBZHQKX8x5gw4851fZQoaAZoCWgPQwiT36KTpVb4v5SGlFKUaBVLMmgWR0Cl/GwXyiEhdX2UKGgGaAloD0MIqG+Z02Wx+7+UhpRSlGgVSzJoFkdApf50M1CPZXV9lChoBmgJaA9DCGRYxRuZx/a/lIaUUpRoFUsyaBZHQKX+HetSydF1fZQoaAZoCWgPQwgRww5j0t8CwJSGlFKUaBVLMmgWR0Cl/cXmFJxvdX2UKGgGaAloD0MIwVQzaymg+b+UhpRSlGgVSzJoFkdApf1qgsbvPXV9lChoBmgJaA9DCIhLjjulQ/a/lIaUUpRoFUsyaBZHQKX/eDkELYx1fZQoaAZoCWgPQwhyFYvfFBb7v5SGlFKUaBVLMmgWR0Cl/yHOryUcdX2UKGgGaAloD0MIUFJgAUwZ9b+UhpRSlGgVSzJoFkdApf7Js9B8hXV9lChoBmgJaA9DCJ+OxwxUxv6/lIaUUpRoFUsyaBZHQKX+blDF6zF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (762 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -1.5395208201836794, "std_reward": 0.3600462402084881, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-13T13:58:51.904311"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:777694e787a91cc824a14c81ec28ccb90346fde5588b7efa1a039ff8b2d41a07
|
3 |
+
size 2381
|