Ubuntu
commited on
Commit
•
8bb2147
1
Parent(s):
857379d
modified: README.md
Browse filesnew file: pipelines.ts
new file: widget-example.ts
- README.md +1 -3
- pipelines.ts +675 -0
- widget-example.ts +125 -0
README.md
CHANGED
@@ -9,8 +9,6 @@ model-index:
|
|
9 |
results: []
|
10 |
---
|
11 |
|
12 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
-
should probably proofread and complete it, then remove this comment. -->
|
14 |
|
15 |
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|
16 |
<details><summary>See axolotl config</summary>
|
@@ -152,4 +150,4 @@ The following hyperparameters were used during training:
|
|
152 |
- Transformers 4.39.0.dev0
|
153 |
- Pytorch 2.1.2+cu118
|
154 |
- Datasets 2.18.0
|
155 |
-
- Tokenizers 0.15.0
|
|
|
9 |
results: []
|
10 |
---
|
11 |
|
|
|
|
|
12 |
|
13 |
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|
14 |
<details><summary>See axolotl config</summary>
|
|
|
150 |
- Transformers 4.39.0.dev0
|
151 |
- Pytorch 2.1.2+cu118
|
152 |
- Datasets 2.18.0
|
153 |
+
- Tokenizers 0.15.0
|
pipelines.ts
ADDED
@@ -0,0 +1,675 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
export const MODALITIES = ["cv", "nlp", "audio", "tabular", "multimodal", "rl", "other"] as const;
|
2 |
+
|
3 |
+
export type Modality = (typeof MODALITIES)[number];
|
4 |
+
|
5 |
+
export const MODALITY_LABELS = {
|
6 |
+
multimodal: "Multimodal",
|
7 |
+
nlp: "Natural Language Processing",
|
8 |
+
audio: "Audio",
|
9 |
+
cv: "Computer Vision",
|
10 |
+
rl: "Reinforcement Learning",
|
11 |
+
tabular: "Tabular",
|
12 |
+
other: "Other",
|
13 |
+
} satisfies Record<Modality, string>;
|
14 |
+
|
15 |
+
/**
|
16 |
+
* Public interface for a sub task.
|
17 |
+
*
|
18 |
+
* This can be used in a model card's `model-index` metadata.
|
19 |
+
* and is more granular classification that can grow significantly
|
20 |
+
* over time as new tasks are added.
|
21 |
+
*/
|
22 |
+
export interface SubTask {
|
23 |
+
/**
|
24 |
+
* type of the task (e.g. audio-source-separation)
|
25 |
+
*/
|
26 |
+
type: string;
|
27 |
+
/**
|
28 |
+
* displayed name of the task (e.g. Audio Source Separation)
|
29 |
+
*/
|
30 |
+
name: string;
|
31 |
+
}
|
32 |
+
|
33 |
+
/**
|
34 |
+
* Public interface for a PipelineData.
|
35 |
+
*
|
36 |
+
* This information corresponds to a pipeline type (aka task)
|
37 |
+
* in the Hub.
|
38 |
+
*/
|
39 |
+
export interface PipelineData {
|
40 |
+
/**
|
41 |
+
* displayed name of the task (e.g. Text Classification)
|
42 |
+
*/
|
43 |
+
name: string;
|
44 |
+
subtasks?: SubTask[];
|
45 |
+
modality: Modality;
|
46 |
+
/**
|
47 |
+
* color for the tag icon.
|
48 |
+
*/
|
49 |
+
color: "blue" | "green" | "indigo" | "orange" | "red" | "yellow";
|
50 |
+
/**
|
51 |
+
* whether to hide in /models filters
|
52 |
+
*/
|
53 |
+
hideInModels?: boolean;
|
54 |
+
/**
|
55 |
+
* whether to hide in /datasets filters
|
56 |
+
*/
|
57 |
+
hideInDatasets?: boolean;
|
58 |
+
}
|
59 |
+
|
60 |
+
/// Coarse-grained taxonomy of tasks
|
61 |
+
///
|
62 |
+
/// This type is used in multiple places in the Hugging Face
|
63 |
+
/// ecosystem:
|
64 |
+
/// - To determine which widget to show.
|
65 |
+
/// - To determine which endpoint of Inference Endpoints to use.
|
66 |
+
/// - As filters at the left of models and datasets page.
|
67 |
+
///
|
68 |
+
/// Note that this is sensitive to order.
|
69 |
+
/// For each domain, the order should be of decreasing specificity.
|
70 |
+
/// This will impact the default pipeline tag of a model when not
|
71 |
+
/// specified.
|
72 |
+
export const PIPELINE_DATA = {
|
73 |
+
"text-classification": {
|
74 |
+
name: "Text Classification",
|
75 |
+
subtasks: [
|
76 |
+
{
|
77 |
+
type: "acceptability-classification",
|
78 |
+
name: "Acceptability Classification",
|
79 |
+
},
|
80 |
+
{
|
81 |
+
type: "entity-linking-classification",
|
82 |
+
name: "Entity Linking Classification",
|
83 |
+
},
|
84 |
+
{
|
85 |
+
type: "fact-checking",
|
86 |
+
name: "Fact Checking",
|
87 |
+
},
|
88 |
+
{
|
89 |
+
type: "intent-classification",
|
90 |
+
name: "Intent Classification",
|
91 |
+
},
|
92 |
+
{
|
93 |
+
type: "language-identification",
|
94 |
+
name: "Language Identification",
|
95 |
+
},
|
96 |
+
{
|
97 |
+
type: "multi-class-classification",
|
98 |
+
name: "Multi Class Classification",
|
99 |
+
},
|
100 |
+
{
|
101 |
+
type: "multi-label-classification",
|
102 |
+
name: "Multi Label Classification",
|
103 |
+
},
|
104 |
+
{
|
105 |
+
type: "multi-input-text-classification",
|
106 |
+
name: "Multi-input Text Classification",
|
107 |
+
},
|
108 |
+
{
|
109 |
+
type: "natural-language-inference",
|
110 |
+
name: "Natural Language Inference",
|
111 |
+
},
|
112 |
+
{
|
113 |
+
type: "semantic-similarity-classification",
|
114 |
+
name: "Semantic Similarity Classification",
|
115 |
+
},
|
116 |
+
{
|
117 |
+
type: "sentiment-classification",
|
118 |
+
name: "Sentiment Classification",
|
119 |
+
},
|
120 |
+
{
|
121 |
+
type: "topic-classification",
|
122 |
+
name: "Topic Classification",
|
123 |
+
},
|
124 |
+
{
|
125 |
+
type: "semantic-similarity-scoring",
|
126 |
+
name: "Semantic Similarity Scoring",
|
127 |
+
},
|
128 |
+
{
|
129 |
+
type: "sentiment-scoring",
|
130 |
+
name: "Sentiment Scoring",
|
131 |
+
},
|
132 |
+
{
|
133 |
+
type: "sentiment-analysis",
|
134 |
+
name: "Sentiment Analysis",
|
135 |
+
},
|
136 |
+
{
|
137 |
+
type: "hate-speech-detection",
|
138 |
+
name: "Hate Speech Detection",
|
139 |
+
},
|
140 |
+
{
|
141 |
+
type: "text-scoring",
|
142 |
+
name: "Text Scoring",
|
143 |
+
},
|
144 |
+
],
|
145 |
+
modality: "nlp",
|
146 |
+
color: "orange",
|
147 |
+
},
|
148 |
+
"token-classification": {
|
149 |
+
name: "Token Classification",
|
150 |
+
subtasks: [
|
151 |
+
{
|
152 |
+
type: "named-entity-recognition",
|
153 |
+
name: "Named Entity Recognition",
|
154 |
+
},
|
155 |
+
{
|
156 |
+
type: "part-of-speech",
|
157 |
+
name: "Part of Speech",
|
158 |
+
},
|
159 |
+
{
|
160 |
+
type: "parsing",
|
161 |
+
name: "Parsing",
|
162 |
+
},
|
163 |
+
{
|
164 |
+
type: "lemmatization",
|
165 |
+
name: "Lemmatization",
|
166 |
+
},
|
167 |
+
{
|
168 |
+
type: "word-sense-disambiguation",
|
169 |
+
name: "Word Sense Disambiguation",
|
170 |
+
},
|
171 |
+
{
|
172 |
+
type: "coreference-resolution",
|
173 |
+
name: "Coreference-resolution",
|
174 |
+
},
|
175 |
+
],
|
176 |
+
modality: "nlp",
|
177 |
+
color: "blue",
|
178 |
+
},
|
179 |
+
"table-question-answering": {
|
180 |
+
name: "Table Question Answering",
|
181 |
+
modality: "nlp",
|
182 |
+
color: "green",
|
183 |
+
},
|
184 |
+
"question-answering": {
|
185 |
+
name: "Question Answering",
|
186 |
+
subtasks: [
|
187 |
+
{
|
188 |
+
type: "extractive-qa",
|
189 |
+
name: "Extractive QA",
|
190 |
+
},
|
191 |
+
{
|
192 |
+
type: "open-domain-qa",
|
193 |
+
name: "Open Domain QA",
|
194 |
+
},
|
195 |
+
{
|
196 |
+
type: "closed-domain-qa",
|
197 |
+
name: "Closed Domain QA",
|
198 |
+
},
|
199 |
+
],
|
200 |
+
modality: "nlp",
|
201 |
+
color: "blue",
|
202 |
+
},
|
203 |
+
"zero-shot-classification": {
|
204 |
+
name: "Zero-Shot Classification",
|
205 |
+
modality: "nlp",
|
206 |
+
color: "yellow",
|
207 |
+
},
|
208 |
+
translation: {
|
209 |
+
name: "Translation",
|
210 |
+
modality: "nlp",
|
211 |
+
color: "green",
|
212 |
+
},
|
213 |
+
summarization: {
|
214 |
+
name: "Summarization",
|
215 |
+
subtasks: [
|
216 |
+
{
|
217 |
+
type: "news-articles-summarization",
|
218 |
+
name: "News Articles Summarization",
|
219 |
+
},
|
220 |
+
{
|
221 |
+
type: "news-articles-headline-generation",
|
222 |
+
name: "News Articles Headline Generation",
|
223 |
+
},
|
224 |
+
],
|
225 |
+
modality: "nlp",
|
226 |
+
color: "indigo",
|
227 |
+
},
|
228 |
+
"feature-extraction": {
|
229 |
+
name: "Feature Extraction",
|
230 |
+
modality: "nlp",
|
231 |
+
color: "red",
|
232 |
+
},
|
233 |
+
"text-generation": {
|
234 |
+
name: "Text Generation",
|
235 |
+
subtasks: [
|
236 |
+
{
|
237 |
+
type: "dialogue-modeling",
|
238 |
+
name: "Dialogue Modeling",
|
239 |
+
},
|
240 |
+
{
|
241 |
+
type: "dialogue-generation",
|
242 |
+
name: "Dialogue Generation",
|
243 |
+
},
|
244 |
+
{
|
245 |
+
type: "conversational",
|
246 |
+
name: "Conversational",
|
247 |
+
},
|
248 |
+
{
|
249 |
+
type: "language-modeling",
|
250 |
+
name: "Language Modeling",
|
251 |
+
},
|
252 |
+
],
|
253 |
+
modality: "nlp",
|
254 |
+
color: "indigo",
|
255 |
+
},
|
256 |
+
"text2text-generation": {
|
257 |
+
name: "Text2Text Generation",
|
258 |
+
subtasks: [
|
259 |
+
{
|
260 |
+
type: "text-simplification",
|
261 |
+
name: "Text simplification",
|
262 |
+
},
|
263 |
+
{
|
264 |
+
type: "explanation-generation",
|
265 |
+
name: "Explanation Generation",
|
266 |
+
},
|
267 |
+
{
|
268 |
+
type: "abstractive-qa",
|
269 |
+
name: "Abstractive QA",
|
270 |
+
},
|
271 |
+
{
|
272 |
+
type: "open-domain-abstractive-qa",
|
273 |
+
name: "Open Domain Abstractive QA",
|
274 |
+
},
|
275 |
+
{
|
276 |
+
type: "closed-domain-qa",
|
277 |
+
name: "Closed Domain QA",
|
278 |
+
},
|
279 |
+
{
|
280 |
+
type: "open-book-qa",
|
281 |
+
name: "Open Book QA",
|
282 |
+
},
|
283 |
+
{
|
284 |
+
type: "closed-book-qa",
|
285 |
+
name: "Closed Book QA",
|
286 |
+
},
|
287 |
+
],
|
288 |
+
modality: "nlp",
|
289 |
+
color: "indigo",
|
290 |
+
},
|
291 |
+
"fill-mask": {
|
292 |
+
name: "Fill-Mask",
|
293 |
+
subtasks: [
|
294 |
+
{
|
295 |
+
type: "slot-filling",
|
296 |
+
name: "Slot Filling",
|
297 |
+
},
|
298 |
+
{
|
299 |
+
type: "masked-language-modeling",
|
300 |
+
name: "Masked Language Modeling",
|
301 |
+
},
|
302 |
+
],
|
303 |
+
modality: "nlp",
|
304 |
+
color: "red",
|
305 |
+
},
|
306 |
+
"sentence-similarity": {
|
307 |
+
name: "Sentence Similarity",
|
308 |
+
modality: "nlp",
|
309 |
+
color: "yellow",
|
310 |
+
},
|
311 |
+
"text-to-speech": {
|
312 |
+
name: "Text-to-Speech",
|
313 |
+
modality: "audio",
|
314 |
+
color: "yellow",
|
315 |
+
},
|
316 |
+
"text-to-audio": {
|
317 |
+
name: "Text-to-Audio",
|
318 |
+
modality: "audio",
|
319 |
+
color: "yellow",
|
320 |
+
},
|
321 |
+
"automatic-speech-recognition": {
|
322 |
+
name: "Automatic Speech Recognition",
|
323 |
+
modality: "audio",
|
324 |
+
color: "yellow",
|
325 |
+
},
|
326 |
+
"audio-to-audio": {
|
327 |
+
name: "Audio-to-Audio",
|
328 |
+
modality: "audio",
|
329 |
+
color: "blue",
|
330 |
+
},
|
331 |
+
"audio-classification": {
|
332 |
+
name: "Audio Classification",
|
333 |
+
subtasks: [
|
334 |
+
{
|
335 |
+
type: "keyword-spotting",
|
336 |
+
name: "Keyword Spotting",
|
337 |
+
},
|
338 |
+
{
|
339 |
+
type: "speaker-identification",
|
340 |
+
name: "Speaker Identification",
|
341 |
+
},
|
342 |
+
{
|
343 |
+
type: "audio-intent-classification",
|
344 |
+
name: "Audio Intent Classification",
|
345 |
+
},
|
346 |
+
{
|
347 |
+
type: "audio-emotion-recognition",
|
348 |
+
name: "Audio Emotion Recognition",
|
349 |
+
},
|
350 |
+
{
|
351 |
+
type: "audio-language-identification",
|
352 |
+
name: "Audio Language Identification",
|
353 |
+
},
|
354 |
+
],
|
355 |
+
modality: "audio",
|
356 |
+
color: "green",
|
357 |
+
},
|
358 |
+
"voice-activity-detection": {
|
359 |
+
name: "Voice Activity Detection",
|
360 |
+
modality: "audio",
|
361 |
+
color: "red",
|
362 |
+
},
|
363 |
+
"depth-estimation": {
|
364 |
+
name: "Depth Estimation",
|
365 |
+
modality: "cv",
|
366 |
+
color: "yellow",
|
367 |
+
},
|
368 |
+
"image-classification": {
|
369 |
+
name: "Image Classification",
|
370 |
+
subtasks: [
|
371 |
+
{
|
372 |
+
type: "multi-label-image-classification",
|
373 |
+
name: "Multi Label Image Classification",
|
374 |
+
},
|
375 |
+
{
|
376 |
+
type: "multi-class-image-classification",
|
377 |
+
name: "Multi Class Image Classification",
|
378 |
+
},
|
379 |
+
],
|
380 |
+
modality: "cv",
|
381 |
+
color: "blue",
|
382 |
+
},
|
383 |
+
"object-detection": {
|
384 |
+
name: "Object Detection",
|
385 |
+
subtasks: [
|
386 |
+
{
|
387 |
+
type: "face-detection",
|
388 |
+
name: "Face Detection",
|
389 |
+
},
|
390 |
+
{
|
391 |
+
type: "vehicle-detection",
|
392 |
+
name: "Vehicle Detection",
|
393 |
+
},
|
394 |
+
],
|
395 |
+
modality: "cv",
|
396 |
+
color: "yellow",
|
397 |
+
},
|
398 |
+
"image-segmentation": {
|
399 |
+
name: "Image Segmentation",
|
400 |
+
subtasks: [
|
401 |
+
{
|
402 |
+
type: "instance-segmentation",
|
403 |
+
name: "Instance Segmentation",
|
404 |
+
},
|
405 |
+
{
|
406 |
+
type: "semantic-segmentation",
|
407 |
+
name: "Semantic Segmentation",
|
408 |
+
},
|
409 |
+
{
|
410 |
+
type: "panoptic-segmentation",
|
411 |
+
name: "Panoptic Segmentation",
|
412 |
+
},
|
413 |
+
],
|
414 |
+
modality: "cv",
|
415 |
+
color: "green",
|
416 |
+
},
|
417 |
+
"text-to-image": {
|
418 |
+
name: "Text-to-Image",
|
419 |
+
modality: "cv",
|
420 |
+
color: "yellow",
|
421 |
+
},
|
422 |
+
"image-to-text": {
|
423 |
+
name: "Image-to-Text",
|
424 |
+
subtasks: [
|
425 |
+
{
|
426 |
+
type: "image-captioning",
|
427 |
+
name: "Image Captioning",
|
428 |
+
},
|
429 |
+
],
|
430 |
+
modality: "cv",
|
431 |
+
color: "red",
|
432 |
+
},
|
433 |
+
"image-to-image": {
|
434 |
+
name: "Image-to-Image",
|
435 |
+
subtasks: [
|
436 |
+
{
|
437 |
+
type: "image-inpainting",
|
438 |
+
name: "Image Inpainting",
|
439 |
+
},
|
440 |
+
{
|
441 |
+
type: "image-colorization",
|
442 |
+
name: "Image Colorization",
|
443 |
+
},
|
444 |
+
{
|
445 |
+
type: "super-resolution",
|
446 |
+
name: "Super Resolution",
|
447 |
+
},
|
448 |
+
],
|
449 |
+
modality: "cv",
|
450 |
+
color: "indigo",
|
451 |
+
},
|
452 |
+
"image-to-video": {
|
453 |
+
name: "Image-to-Video",
|
454 |
+
modality: "cv",
|
455 |
+
color: "indigo",
|
456 |
+
},
|
457 |
+
"unconditional-image-generation": {
|
458 |
+
name: "Unconditional Image Generation",
|
459 |
+
modality: "cv",
|
460 |
+
color: "green",
|
461 |
+
},
|
462 |
+
"video-classification": {
|
463 |
+
name: "Video Classification",
|
464 |
+
modality: "cv",
|
465 |
+
color: "blue",
|
466 |
+
},
|
467 |
+
"reinforcement-learning": {
|
468 |
+
name: "Reinforcement Learning",
|
469 |
+
modality: "rl",
|
470 |
+
color: "red",
|
471 |
+
},
|
472 |
+
robotics: {
|
473 |
+
name: "Robotics",
|
474 |
+
modality: "rl",
|
475 |
+
subtasks: [
|
476 |
+
{
|
477 |
+
type: "grasping",
|
478 |
+
name: "Grasping",
|
479 |
+
},
|
480 |
+
{
|
481 |
+
type: "task-planning",
|
482 |
+
name: "Task Planning",
|
483 |
+
},
|
484 |
+
],
|
485 |
+
color: "blue",
|
486 |
+
},
|
487 |
+
"tabular-classification": {
|
488 |
+
name: "Tabular Classification",
|
489 |
+
modality: "tabular",
|
490 |
+
subtasks: [
|
491 |
+
{
|
492 |
+
type: "tabular-multi-class-classification",
|
493 |
+
name: "Tabular Multi Class Classification",
|
494 |
+
},
|
495 |
+
{
|
496 |
+
type: "tabular-multi-label-classification",
|
497 |
+
name: "Tabular Multi Label Classification",
|
498 |
+
},
|
499 |
+
],
|
500 |
+
color: "blue",
|
501 |
+
},
|
502 |
+
"tabular-regression": {
|
503 |
+
name: "Tabular Regression",
|
504 |
+
modality: "tabular",
|
505 |
+
subtasks: [
|
506 |
+
{
|
507 |
+
type: "tabular-single-column-regression",
|
508 |
+
name: "Tabular Single Column Regression",
|
509 |
+
},
|
510 |
+
],
|
511 |
+
color: "blue",
|
512 |
+
},
|
513 |
+
"tabular-to-text": {
|
514 |
+
name: "Tabular to Text",
|
515 |
+
modality: "tabular",
|
516 |
+
subtasks: [
|
517 |
+
{
|
518 |
+
type: "rdf-to-text",
|
519 |
+
name: "RDF to text",
|
520 |
+
},
|
521 |
+
],
|
522 |
+
color: "blue",
|
523 |
+
hideInModels: true,
|
524 |
+
},
|
525 |
+
"table-to-text": {
|
526 |
+
name: "Table to Text",
|
527 |
+
modality: "nlp",
|
528 |
+
color: "blue",
|
529 |
+
hideInModels: true,
|
530 |
+
},
|
531 |
+
"multiple-choice": {
|
532 |
+
name: "Multiple Choice",
|
533 |
+
subtasks: [
|
534 |
+
{
|
535 |
+
type: "multiple-choice-qa",
|
536 |
+
name: "Multiple Choice QA",
|
537 |
+
},
|
538 |
+
{
|
539 |
+
type: "multiple-choice-coreference-resolution",
|
540 |
+
name: "Multiple Choice Coreference Resolution",
|
541 |
+
},
|
542 |
+
],
|
543 |
+
modality: "nlp",
|
544 |
+
color: "blue",
|
545 |
+
hideInModels: true,
|
546 |
+
},
|
547 |
+
"text-retrieval": {
|
548 |
+
name: "Text Retrieval",
|
549 |
+
subtasks: [
|
550 |
+
{
|
551 |
+
type: "document-retrieval",
|
552 |
+
name: "Document Retrieval",
|
553 |
+
},
|
554 |
+
{
|
555 |
+
type: "utterance-retrieval",
|
556 |
+
name: "Utterance Retrieval",
|
557 |
+
},
|
558 |
+
{
|
559 |
+
type: "entity-linking-retrieval",
|
560 |
+
name: "Entity Linking Retrieval",
|
561 |
+
},
|
562 |
+
{
|
563 |
+
type: "fact-checking-retrieval",
|
564 |
+
name: "Fact Checking Retrieval",
|
565 |
+
},
|
566 |
+
],
|
567 |
+
modality: "nlp",
|
568 |
+
color: "indigo",
|
569 |
+
hideInModels: true,
|
570 |
+
},
|
571 |
+
"time-series-forecasting": {
|
572 |
+
name: "Time Series Forecasting",
|
573 |
+
modality: "tabular",
|
574 |
+
subtasks: [
|
575 |
+
{
|
576 |
+
type: "univariate-time-series-forecasting",
|
577 |
+
name: "Univariate Time Series Forecasting",
|
578 |
+
},
|
579 |
+
{
|
580 |
+
type: "multivariate-time-series-forecasting",
|
581 |
+
name: "Multivariate Time Series Forecasting",
|
582 |
+
},
|
583 |
+
],
|
584 |
+
color: "blue",
|
585 |
+
hideInModels: true,
|
586 |
+
},
|
587 |
+
"text-to-video": {
|
588 |
+
name: "Text-to-Video",
|
589 |
+
modality: "cv",
|
590 |
+
color: "green",
|
591 |
+
},
|
592 |
+
"image-text-to-text": {
|
593 |
+
name: "Image-Text-to-Text",
|
594 |
+
modality: "multimodal",
|
595 |
+
color: "red",
|
596 |
+
hideInDatasets: true,
|
597 |
+
},
|
598 |
+
"visual-question-answering": {
|
599 |
+
name: "Visual Question Answering",
|
600 |
+
subtasks: [
|
601 |
+
{
|
602 |
+
type: "visual-question-answering",
|
603 |
+
name: "Visual Question Answering",
|
604 |
+
},
|
605 |
+
],
|
606 |
+
modality: "multimodal",
|
607 |
+
color: "red",
|
608 |
+
},
|
609 |
+
"document-question-answering": {
|
610 |
+
name: "Document Question Answering",
|
611 |
+
subtasks: [
|
612 |
+
{
|
613 |
+
type: "document-question-answering",
|
614 |
+
name: "Document Question Answering",
|
615 |
+
},
|
616 |
+
],
|
617 |
+
modality: "multimodal",
|
618 |
+
color: "blue",
|
619 |
+
hideInDatasets: true,
|
620 |
+
},
|
621 |
+
"zero-shot-image-classification": {
|
622 |
+
name: "Zero-Shot Image Classification",
|
623 |
+
modality: "cv",
|
624 |
+
color: "yellow",
|
625 |
+
},
|
626 |
+
"graph-ml": {
|
627 |
+
name: "Graph Machine Learning",
|
628 |
+
modality: "other",
|
629 |
+
color: "green",
|
630 |
+
},
|
631 |
+
"mask-generation": {
|
632 |
+
name: "Mask Generation",
|
633 |
+
modality: "cv",
|
634 |
+
color: "indigo",
|
635 |
+
},
|
636 |
+
"zero-shot-object-detection": {
|
637 |
+
name: "Zero-Shot Object Detection",
|
638 |
+
modality: "cv",
|
639 |
+
color: "yellow",
|
640 |
+
},
|
641 |
+
"text-to-3d": {
|
642 |
+
name: "Text-to-3D",
|
643 |
+
modality: "cv",
|
644 |
+
color: "yellow",
|
645 |
+
},
|
646 |
+
"image-to-3d": {
|
647 |
+
name: "Image-to-3D",
|
648 |
+
modality: "cv",
|
649 |
+
color: "green",
|
650 |
+
},
|
651 |
+
"image-feature-extraction": {
|
652 |
+
name: "Image Feature Extraction",
|
653 |
+
modality: "cv",
|
654 |
+
color: "indigo",
|
655 |
+
},
|
656 |
+
other: {
|
657 |
+
name: "Other",
|
658 |
+
modality: "other",
|
659 |
+
color: "blue",
|
660 |
+
hideInModels: true,
|
661 |
+
hideInDatasets: true,
|
662 |
+
},
|
663 |
+
} satisfies Record<string, PipelineData>;
|
664 |
+
|
665 |
+
export type PipelineType = keyof typeof PIPELINE_DATA;
|
666 |
+
|
667 |
+
export type WidgetType = PipelineType | "conversational";
|
668 |
+
|
669 |
+
export const PIPELINE_TYPES = Object.keys(PIPELINE_DATA) as PipelineType[];
|
670 |
+
|
671 |
+
export const SUBTASK_TYPES = Object.values(PIPELINE_DATA)
|
672 |
+
.flatMap((data) => ("subtasks" in data ? data.subtasks : []))
|
673 |
+
.map((s) => s.type);
|
674 |
+
|
675 |
+
export const PIPELINE_TYPES_SET = new Set(PIPELINE_TYPES);
|
widget-example.ts
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
type TableData = Record<string, (string | number)[]>;
|
3 |
+
|
4 |
+
//#region outputs
|
5 |
+
export type WidgetExampleOutputLabels = Array<{ label: string; score: number }>;
|
6 |
+
export interface WidgetExampleOutputAnswerScore {
|
7 |
+
answer: string;
|
8 |
+
score: number;
|
9 |
+
}
|
10 |
+
export interface WidgetExampleOutputText {
|
11 |
+
text: string;
|
12 |
+
}
|
13 |
+
export interface WidgetExampleOutputUrl {
|
14 |
+
url: string;
|
15 |
+
}
|
16 |
+
|
17 |
+
export type WidgetExampleOutput =
|
18 |
+
| WidgetExampleOutputLabels
|
19 |
+
| WidgetExampleOutputAnswerScore
|
20 |
+
| WidgetExampleOutputText
|
21 |
+
| WidgetExampleOutputUrl;
|
22 |
+
//#endregion
|
23 |
+
|
24 |
+
export interface WidgetExampleBase<TOutput> {
|
25 |
+
example_title?: string;
|
26 |
+
group?: string;
|
27 |
+
/**
|
28 |
+
* Potential overrides to API parameters for this specific example
|
29 |
+
* (takes precedences over the model card metadata's inference.parameters)
|
30 |
+
*/
|
31 |
+
parameters?: {
|
32 |
+
/// token-classification
|
33 |
+
aggregation_strategy?: string;
|
34 |
+
/// text-generation
|
35 |
+
top_k?: number;
|
36 |
+
top_p?: number;
|
37 |
+
temperature?: number;
|
38 |
+
max_new_tokens?: number;
|
39 |
+
do_sample?: boolean;
|
40 |
+
/// text-to-image
|
41 |
+
negative_prompt?: string;
|
42 |
+
guidance_scale?: number;
|
43 |
+
num_inference_steps?: number;
|
44 |
+
};
|
45 |
+
/**
|
46 |
+
* Optional output
|
47 |
+
*/
|
48 |
+
output?: TOutput;
|
49 |
+
}
|
50 |
+
|
51 |
+
export interface ChatMessage {
|
52 |
+
role: "user" | "assistant" | "system";
|
53 |
+
content: string;
|
54 |
+
}
|
55 |
+
|
56 |
+
export interface WidgetExampleChatInput<TOutput = WidgetExampleOutput> extends WidgetExampleBase<TOutput> {
|
57 |
+
messages: ChatMessage[];
|
58 |
+
}
|
59 |
+
|
60 |
+
export interface WidgetExampleTextInput<TOutput = WidgetExampleOutput> extends WidgetExampleBase<TOutput> {
|
61 |
+
text: string;
|
62 |
+
}
|
63 |
+
|
64 |
+
export interface WidgetExampleTextAndContextInput<TOutput = WidgetExampleOutput>
|
65 |
+
extends WidgetExampleTextInput<TOutput> {
|
66 |
+
context: string;
|
67 |
+
}
|
68 |
+
|
69 |
+
export interface WidgetExampleTextAndTableInput<TOutput = WidgetExampleOutput> extends WidgetExampleTextInput<TOutput> {
|
70 |
+
table: TableData;
|
71 |
+
}
|
72 |
+
|
73 |
+
export interface WidgetExampleAssetInput<TOutput = WidgetExampleOutput> extends WidgetExampleBase<TOutput> {
|
74 |
+
src: string;
|
75 |
+
}
|
76 |
+
export interface WidgetExampleAssetAndPromptInput<TOutput = WidgetExampleOutput>
|
77 |
+
extends WidgetExampleAssetInput<TOutput> {
|
78 |
+
prompt: string;
|
79 |
+
}
|
80 |
+
|
81 |
+
export type WidgetExampleAssetAndTextInput<TOutput = WidgetExampleOutput> = WidgetExampleAssetInput<TOutput> &
|
82 |
+
WidgetExampleTextInput<TOutput>;
|
83 |
+
|
84 |
+
export type WidgetExampleAssetAndZeroShotInput<TOutput = WidgetExampleOutput> = WidgetExampleAssetInput<TOutput> &
|
85 |
+
WidgetExampleZeroShotTextInput<TOutput>;
|
86 |
+
|
87 |
+
export interface WidgetExampleStructuredDataInput<TOutput = WidgetExampleOutput> extends WidgetExampleBase<TOutput> {
|
88 |
+
structured_data: TableData;
|
89 |
+
}
|
90 |
+
|
91 |
+
export interface WidgetExampleTableDataInput<TOutput = WidgetExampleOutput> extends WidgetExampleBase<TOutput> {
|
92 |
+
table: TableData;
|
93 |
+
}
|
94 |
+
|
95 |
+
export interface WidgetExampleZeroShotTextInput<TOutput = WidgetExampleOutput> extends WidgetExampleTextInput<TOutput> {
|
96 |
+
text: string;
|
97 |
+
candidate_labels: string;
|
98 |
+
multi_class: boolean;
|
99 |
+
}
|
100 |
+
|
101 |
+
export interface WidgetExampleSentenceSimilarityInput<TOutput = WidgetExampleOutput>
|
102 |
+
extends WidgetExampleBase<TOutput> {
|
103 |
+
source_sentence: string;
|
104 |
+
sentences: string[];
|
105 |
+
}
|
106 |
+
|
107 |
+
//#endregion
|
108 |
+
|
109 |
+
export type WidgetExample<TOutput = WidgetExampleOutput> =
|
110 |
+
| WidgetExampleChatInput<TOutput>
|
111 |
+
| WidgetExampleTextInput<TOutput>
|
112 |
+
| WidgetExampleTextAndContextInput<TOutput>
|
113 |
+
| WidgetExampleTextAndTableInput<TOutput>
|
114 |
+
| WidgetExampleAssetInput<TOutput>
|
115 |
+
| WidgetExampleAssetAndPromptInput<TOutput>
|
116 |
+
| WidgetExampleAssetAndTextInput<TOutput>
|
117 |
+
| WidgetExampleAssetAndZeroShotInput<TOutput>
|
118 |
+
| WidgetExampleStructuredDataInput<TOutput>
|
119 |
+
| WidgetExampleTableDataInput<TOutput>
|
120 |
+
| WidgetExampleZeroShotTextInput<TOutput>
|
121 |
+
| WidgetExampleSentenceSimilarityInput<TOutput>;
|
122 |
+
|
123 |
+
type KeysOfUnion<T> = T extends unknown ? keyof T : never;
|
124 |
+
|
125 |
+
export type WidgetExampleAttribute = KeysOfUnion<WidgetExample>;
|