dvdmrs09 commited on
Commit
618955c
1 Parent(s): c3378df

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +2 -0
  2. README.md +155 -0
  3. README1.md +153 -0
  4. adapter_config.json +33 -0
  5. adapter_model.bin +3 -0
  6. checkpoint-279/README.md +202 -0
  7. checkpoint-279/adapter_config.json +33 -0
  8. checkpoint-279/adapter_model.safetensors +3 -0
  9. checkpoint-279/global_step279/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  10. checkpoint-279/global_step279/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  11. checkpoint-279/global_step279/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  12. checkpoint-279/global_step279/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  13. checkpoint-279/global_step279/mp_rank_00_model_states.pt +3 -0
  14. checkpoint-279/latest +1 -0
  15. checkpoint-279/rng_state_0.pth +3 -0
  16. checkpoint-279/rng_state_1.pth +3 -0
  17. checkpoint-279/rng_state_2.pth +3 -0
  18. checkpoint-279/rng_state_3.pth +3 -0
  19. checkpoint-279/scheduler.pt +3 -0
  20. checkpoint-279/trainer_state.json +2070 -0
  21. checkpoint-279/training_args.bin +3 -0
  22. checkpoint-279/zero_to_fp32.py +592 -0
  23. checkpoint-336/README.md +202 -0
  24. checkpoint-336/adapter_config.json +33 -0
  25. checkpoint-336/adapter_model.safetensors +3 -0
  26. checkpoint-336/global_step336/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  27. checkpoint-336/global_step336/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  28. checkpoint-336/global_step336/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  29. checkpoint-336/global_step336/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  30. checkpoint-336/global_step336/mp_rank_00_model_states.pt +3 -0
  31. checkpoint-336/latest +1 -0
  32. checkpoint-336/rng_state_0.pth +3 -0
  33. checkpoint-336/rng_state_1.pth +3 -0
  34. checkpoint-336/rng_state_2.pth +3 -0
  35. checkpoint-336/rng_state_3.pth +3 -0
  36. checkpoint-336/scheduler.pt +3 -0
  37. checkpoint-336/trainer_state.json +2477 -0
  38. checkpoint-336/training_args.bin +3 -0
  39. checkpoint-336/zero_to_fp32.py +592 -0
  40. checkpoint-372/README.md +202 -0
  41. checkpoint-372/adapter_config.json +33 -0
  42. checkpoint-372/adapter_model.safetensors +3 -0
  43. checkpoint-372/global_step372/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  44. checkpoint-372/global_step372/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  45. checkpoint-372/global_step372/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  46. checkpoint-372/global_step372/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  47. checkpoint-372/global_step372/mp_rank_00_model_states.pt +3 -0
  48. checkpoint-372/latest +1 -0
  49. checkpoint-372/rng_state_0.pth +3 -0
  50. checkpoint-372/rng_state_1.pth +3 -0
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ merged/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ library_name: peft
4
+ tags:
5
+ - generated_from_trainer
6
+ base_model: google/gemma-7b-it
7
+ model-index:
8
+ - name: out
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.4.0`
19
+ ```yaml
20
+ # use google/gemma-7b if you have access
21
+ base_model: google/gemma-7b-it
22
+ model_type: AutoModelForCausalLM
23
+ tokenizer_type: AutoTokenizer
24
+
25
+ load_in_8bit: false
26
+ load_in_4bit: true
27
+ strict: false
28
+
29
+ # huggingface repo
30
+ datasets:
31
+ - path: ./python-oasst/chunk_1.jsonl
32
+ type: oasst
33
+ val_set_size: 0.1
34
+ output_dir: ./out
35
+
36
+ adapter: qlora
37
+ lora_r: 32
38
+ lora_alpha: 16
39
+ lora_dropout: 0.05
40
+ lora_target_linear: true
41
+
42
+ sequence_len: 4096
43
+ sample_packing: false
44
+ pad_to_sequence_len: true
45
+
46
+ wandb_project: gemma-7b-it
47
+ wandb_entity:
48
+ wandb_watch:
49
+ wandb_name:
50
+ wandb_log_model:
51
+
52
+
53
+ gradient_accumulation_steps: 6
54
+ micro_batch_size: 4
55
+ num_epochs: 4
56
+ optimizer: adamw_bnb_8bit
57
+ lr_scheduler: cosine
58
+ learning_rate: 0.0002
59
+
60
+ train_on_inputs: true
61
+ group_by_length: false
62
+ bf16: auto
63
+ fp16:
64
+ tf32: false
65
+
66
+ gradient_checkpointing: true
67
+ early_stopping_patience:
68
+ resume_from_checkpoint:
69
+ local_rank:
70
+ logging_steps: 1
71
+ xformers_attention:
72
+ flash_attention: true
73
+
74
+ warmup_ratio: 0.1
75
+ evals_per_epoch: 4
76
+ eval_table_size:
77
+ eval_max_new_tokens: 128
78
+ saves_per_epoch: 1
79
+ debug:
80
+ deepspeed: deepspeed_configs/zero1.json
81
+ weight_decay: 0.0
82
+ fsdp:
83
+ fsdp_config:
84
+ special_tokens:
85
+
86
+ ```
87
+
88
+ </details><br>
89
+
90
+ # out
91
+
92
+ This model is a fine-tuned version of [google/gemma-7b-it](https://huggingface.co/google/gemma-7b-it) on the None dataset.
93
+ It achieves the following results on the evaluation set:
94
+ - Loss: 1.1911
95
+
96
+ ## Model description
97
+
98
+ More information needed
99
+
100
+ ## Intended uses & limitations
101
+
102
+ More information needed
103
+
104
+ ## Training and evaluation data
105
+
106
+ More information needed
107
+
108
+ ## Training procedure
109
+
110
+ ### Training hyperparameters
111
+
112
+ The following hyperparameters were used during training:
113
+ - learning_rate: 0.0002
114
+ - train_batch_size: 4
115
+ - eval_batch_size: 4
116
+ - seed: 42
117
+ - distributed_type: multi-GPU
118
+ - num_devices: 4
119
+ - gradient_accumulation_steps: 6
120
+ - total_train_batch_size: 96
121
+ - total_eval_batch_size: 16
122
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
123
+ - lr_scheduler_type: cosine
124
+ - lr_scheduler_warmup_steps: 9
125
+ - num_epochs: 4
126
+
127
+ ### Training results
128
+
129
+ | Training Loss | Epoch | Step | Validation Loss |
130
+ |:-------------:|:-----:|:----:|:---------------:|
131
+ | 5.0474 | 0.01 | 1 | 5.9279 |
132
+ | 1.2191 | 0.26 | 24 | 1.2947 |
133
+ | 1.1165 | 0.51 | 48 | 1.1679 |
134
+ | 1.0711 | 0.77 | 72 | 1.1377 |
135
+ | 0.9546 | 1.02 | 96 | 1.1303 |
136
+ | 0.9309 | 1.28 | 120 | 1.1298 |
137
+ | 0.9588 | 1.54 | 144 | 1.1242 |
138
+ | 0.8553 | 1.79 | 168 | 1.1259 |
139
+ | 0.8231 | 2.05 | 192 | 1.1449 |
140
+ | 0.8154 | 2.31 | 216 | 1.1514 |
141
+ | 0.7354 | 2.56 | 240 | 1.1471 |
142
+ | 0.7577 | 2.82 | 264 | 1.1479 |
143
+ | 0.6647 | 3.07 | 288 | 1.1923 |
144
+ | 0.6928 | 3.33 | 312 | 1.1856 |
145
+ | 0.731 | 3.59 | 336 | 1.1890 |
146
+ | 0.7193 | 3.84 | 360 | 1.1911 |
147
+
148
+
149
+ ### Framework versions
150
+
151
+ - PEFT 0.9.0
152
+ - Transformers 4.39.0.dev0
153
+ - Pytorch 2.1.2+cu118
154
+ - Datasets 2.18.0
155
+ - Tokenizers 0.15.0
README1.md ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ library_name: peft
4
+ tags:
5
+ - generated_from_trainer
6
+ base_model: google/gemma-7b-it
7
+ model-index:
8
+ - name: out
9
+ results: []
10
+ ---
11
+
12
+
13
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
14
+ <details><summary>See axolotl config</summary>
15
+
16
+ axolotl version: `0.4.0`
17
+ ```yaml
18
+ # use google/gemma-7b if you have access
19
+ base_model: google/gemma-7b-it
20
+ model_type: AutoModelForCausalLM
21
+ tokenizer_type: AutoTokenizer
22
+
23
+ load_in_8bit: false
24
+ load_in_4bit: true
25
+ strict: false
26
+
27
+ # huggingface repo
28
+ datasets:
29
+ - path: ./python-oasst/chunk_1.jsonl
30
+ type: oasst
31
+ val_set_size: 0.1
32
+ output_dir: ./out
33
+
34
+ adapter: qlora
35
+ lora_r: 32
36
+ lora_alpha: 16
37
+ lora_dropout: 0.05
38
+ lora_target_linear: true
39
+
40
+ sequence_len: 4096
41
+ sample_packing: false
42
+ pad_to_sequence_len: true
43
+
44
+ wandb_project: gemma-7b-it
45
+ wandb_entity:
46
+ wandb_watch:
47
+ wandb_name:
48
+ wandb_log_model:
49
+
50
+
51
+ gradient_accumulation_steps: 6
52
+ micro_batch_size: 4
53
+ num_epochs: 4
54
+ optimizer: adamw_bnb_8bit
55
+ lr_scheduler: cosine
56
+ learning_rate: 0.0002
57
+
58
+ train_on_inputs: true
59
+ group_by_length: false
60
+ bf16: auto
61
+ fp16:
62
+ tf32: false
63
+
64
+ gradient_checkpointing: true
65
+ early_stopping_patience:
66
+ resume_from_checkpoint:
67
+ local_rank:
68
+ logging_steps: 1
69
+ xformers_attention:
70
+ flash_attention: true
71
+
72
+ warmup_ratio: 0.1
73
+ evals_per_epoch: 4
74
+ eval_table_size:
75
+ eval_max_new_tokens: 128
76
+ saves_per_epoch: 1
77
+ debug:
78
+ deepspeed: deepspeed_configs/zero1.json
79
+ weight_decay: 0.0
80
+ fsdp:
81
+ fsdp_config:
82
+ special_tokens:
83
+
84
+ ```
85
+
86
+ </details><br>
87
+
88
+ # out
89
+
90
+ This model is a fine-tuned version of [google/gemma-7b-it](https://huggingface.co/google/gemma-7b-it) on the None dataset.
91
+ It achieves the following results on the evaluation set:
92
+ - Loss: 1.1911
93
+
94
+ ## Model description
95
+
96
+ More information needed
97
+
98
+ ## Intended uses & limitations
99
+
100
+ More information needed
101
+
102
+ ## Training and evaluation data
103
+
104
+ More information needed
105
+
106
+ ## Training procedure
107
+
108
+ ### Training hyperparameters
109
+
110
+ The following hyperparameters were used during training:
111
+ - learning_rate: 0.0002
112
+ - train_batch_size: 4
113
+ - eval_batch_size: 4
114
+ - seed: 42
115
+ - distributed_type: multi-GPU
116
+ - num_devices: 4
117
+ - gradient_accumulation_steps: 6
118
+ - total_train_batch_size: 96
119
+ - total_eval_batch_size: 16
120
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
121
+ - lr_scheduler_type: cosine
122
+ - lr_scheduler_warmup_steps: 9
123
+ - num_epochs: 4
124
+
125
+ ### Training results
126
+
127
+ | Training Loss | Epoch | Step | Validation Loss |
128
+ |:-------------:|:-----:|:----:|:---------------:|
129
+ | 5.0474 | 0.01 | 1 | 5.9279 |
130
+ | 1.2191 | 0.26 | 24 | 1.2947 |
131
+ | 1.1165 | 0.51 | 48 | 1.1679 |
132
+ | 1.0711 | 0.77 | 72 | 1.1377 |
133
+ | 0.9546 | 1.02 | 96 | 1.1303 |
134
+ | 0.9309 | 1.28 | 120 | 1.1298 |
135
+ | 0.9588 | 1.54 | 144 | 1.1242 |
136
+ | 0.8553 | 1.79 | 168 | 1.1259 |
137
+ | 0.8231 | 2.05 | 192 | 1.1449 |
138
+ | 0.8154 | 2.31 | 216 | 1.1514 |
139
+ | 0.7354 | 2.56 | 240 | 1.1471 |
140
+ | 0.7577 | 2.82 | 264 | 1.1479 |
141
+ | 0.6647 | 3.07 | 288 | 1.1923 |
142
+ | 0.6928 | 3.33 | 312 | 1.1856 |
143
+ | 0.731 | 3.59 | 336 | 1.1890 |
144
+ | 0.7193 | 3.84 | 360 | 1.1911 |
145
+
146
+
147
+ ### Framework versions
148
+
149
+ - PEFT 0.9.0
150
+ - Transformers 4.39.0.dev0
151
+ - Pytorch 2.1.2+cu118
152
+ - Datasets 2.18.0
153
+ - Tokenizers 0.15.0
adapter_config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "google/gemma-7b-it",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": false,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 32,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "gate_proj",
23
+ "up_proj",
24
+ "k_proj",
25
+ "q_proj",
26
+ "down_proj",
27
+ "v_proj",
28
+ "o_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "use_dora": false,
32
+ "use_rslora": false
33
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25b9fe36c6655d98214b7521f5d8d9f662fc0c4007a06eeefea535ccfec3dc1e
3
+ size 200078074
checkpoint-279/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: google/gemma-7b-it
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.9.0
checkpoint-279/adapter_config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "google/gemma-7b-it",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 32,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "down_proj",
23
+ "o_proj",
24
+ "k_proj",
25
+ "q_proj",
26
+ "gate_proj",
27
+ "up_proj",
28
+ "v_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "use_dora": false,
32
+ "use_rslora": false
33
+ }
checkpoint-279/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0831f70d185dae9ca69f58be3eab596067ac52e75e3e97b46d23ecd486b83942
3
+ size 200068904
checkpoint-279/global_step279/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90f2db91b1ca035dfa781beb0567b7cfaaf6646de04cc9a82d8e80069e7a5b09
3
+ size 150126608
checkpoint-279/global_step279/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9ec41ba7f5c3131e00c854ec2bbfca98e6a3321e5f2ddf6efdc6056fa008c5a
3
+ size 150126672
checkpoint-279/global_step279/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41f227ca1d3c19b4cd53567e28a2d395c2e804bd38dfd9bb3c937adab1daf5a3
3
+ size 150126736
checkpoint-279/global_step279/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e486ddf3459c4f6befb004a9374e7e4fb9bd64bba72dd2e6f7051ee89939988
3
+ size 150126736
checkpoint-279/global_step279/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:feed7b7a8694c54651374fb581d67d60790a016e23023446231557add62ffc80
3
+ size 1896781286
checkpoint-279/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step279
checkpoint-279/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a84c3f9fa55e23a5c4d93b108c705b57ba9a5ed816191e6dfbb6e72ad2857e6d
3
+ size 15024
checkpoint-279/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fbb1da31ff41578c72556d0a8b9b94abf6be26bf16b6456ecd87d2b611f5b9bd
3
+ size 15024
checkpoint-279/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:11a7b38529914886a43976df69af7f331315329e1d38788c57003ca4cd1a849f
3
+ size 15024
checkpoint-279/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d65b4248464f467db8226c5cc4ba4aa32e06af0bf915b61ea8a2db71d16b5ce
3
+ size 15024
checkpoint-279/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:099f524a0aa9353b01bf7d70e5a899c6e8ee8efc46e982213631888df6e5111b
3
+ size 1064
checkpoint-279/trainer_state.json ADDED
@@ -0,0 +1,2070 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.97864768683274,
5
+ "eval_steps": 24,
6
+ "global_step": 279,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "grad_norm": 1.8206765789002874,
14
+ "learning_rate": 2.2222222222222223e-05,
15
+ "loss": 5.0474,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.01,
20
+ "eval_loss": 5.927858829498291,
21
+ "eval_runtime": 117.3665,
22
+ "eval_samples_per_second": 8.512,
23
+ "eval_steps_per_second": 0.537,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.02,
28
+ "grad_norm": 1.9889295079554647,
29
+ "learning_rate": 4.4444444444444447e-05,
30
+ "loss": 5.5569,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.03,
35
+ "grad_norm": 1.8931443004310682,
36
+ "learning_rate": 6.666666666666667e-05,
37
+ "loss": 5.2383,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.04,
42
+ "grad_norm": 2.195266234429632,
43
+ "learning_rate": 8.888888888888889e-05,
44
+ "loss": 5.4943,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.05,
49
+ "grad_norm": 2.6001064132041503,
50
+ "learning_rate": 0.00011111111111111112,
51
+ "loss": 5.2602,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.06,
56
+ "grad_norm": 3.26301463076567,
57
+ "learning_rate": 0.00013333333333333334,
58
+ "loss": 4.8182,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.07,
63
+ "grad_norm": 3.476044691292363,
64
+ "learning_rate": 0.00015555555555555556,
65
+ "loss": 4.0432,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.09,
70
+ "grad_norm": 3.378803229553045,
71
+ "learning_rate": 0.00017777777777777779,
72
+ "loss": 3.5212,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.1,
77
+ "grad_norm": 3.9419449437137017,
78
+ "learning_rate": 0.0002,
79
+ "loss": 3.2239,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.11,
84
+ "grad_norm": 5.8833082175146485,
85
+ "learning_rate": 0.00019999625498303932,
86
+ "loss": 3.4319,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.12,
91
+ "grad_norm": 5.4690223843996515,
92
+ "learning_rate": 0.0001999850202126604,
93
+ "loss": 2.8167,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.13,
98
+ "grad_norm": 7.009614336449043,
99
+ "learning_rate": 0.00019996629653035126,
100
+ "loss": 2.7966,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.14,
105
+ "grad_norm": 6.254841874500106,
106
+ "learning_rate": 0.0001999400853385221,
107
+ "loss": 2.1336,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.15,
112
+ "grad_norm": 6.037710889841169,
113
+ "learning_rate": 0.00019990638860040006,
114
+ "loss": 1.85,
115
+ "step": 14
116
+ },
117
+ {
118
+ "epoch": 0.16,
119
+ "grad_norm": 1.0500019118881985,
120
+ "learning_rate": 0.00019986520883988232,
121
+ "loss": 1.5964,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 0.17,
126
+ "grad_norm": 0.6169710624824223,
127
+ "learning_rate": 0.00019981654914134686,
128
+ "loss": 1.4307,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.18,
133
+ "grad_norm": 1.86114059095932,
134
+ "learning_rate": 0.00019976041314942155,
135
+ "loss": 1.4285,
136
+ "step": 17
137
+ },
138
+ {
139
+ "epoch": 0.19,
140
+ "grad_norm": 1.6513877610200167,
141
+ "learning_rate": 0.00019969680506871137,
142
+ "loss": 1.4621,
143
+ "step": 18
144
+ },
145
+ {
146
+ "epoch": 0.2,
147
+ "grad_norm": 1.4395882738454628,
148
+ "learning_rate": 0.000199625729663483,
149
+ "loss": 1.3561,
150
+ "step": 19
151
+ },
152
+ {
153
+ "epoch": 0.21,
154
+ "grad_norm": 0.70847060238536,
155
+ "learning_rate": 0.00019954719225730847,
156
+ "loss": 1.3565,
157
+ "step": 20
158
+ },
159
+ {
160
+ "epoch": 0.22,
161
+ "grad_norm": 0.4331630595385925,
162
+ "learning_rate": 0.00019946119873266613,
163
+ "loss": 1.3374,
164
+ "step": 21
165
+ },
166
+ {
167
+ "epoch": 0.23,
168
+ "grad_norm": 0.5580281682185451,
169
+ "learning_rate": 0.0001993677555305002,
170
+ "loss": 1.313,
171
+ "step": 22
172
+ },
173
+ {
174
+ "epoch": 0.25,
175
+ "grad_norm": 0.5217443953771937,
176
+ "learning_rate": 0.00019926686964973813,
177
+ "loss": 1.2541,
178
+ "step": 23
179
+ },
180
+ {
181
+ "epoch": 0.26,
182
+ "grad_norm": 0.36823120314463453,
183
+ "learning_rate": 0.00019915854864676664,
184
+ "loss": 1.2191,
185
+ "step": 24
186
+ },
187
+ {
188
+ "epoch": 0.26,
189
+ "eval_loss": 1.2946609258651733,
190
+ "eval_runtime": 118.9039,
191
+ "eval_samples_per_second": 8.402,
192
+ "eval_steps_per_second": 0.53,
193
+ "step": 24
194
+ },
195
+ {
196
+ "epoch": 0.27,
197
+ "grad_norm": 0.5797477063688413,
198
+ "learning_rate": 0.0001990428006348656,
199
+ "loss": 1.24,
200
+ "step": 25
201
+ },
202
+ {
203
+ "epoch": 0.28,
204
+ "grad_norm": 0.41369538857234545,
205
+ "learning_rate": 0.00019891963428360043,
206
+ "loss": 1.209,
207
+ "step": 26
208
+ },
209
+ {
210
+ "epoch": 0.29,
211
+ "grad_norm": 0.36666008426797836,
212
+ "learning_rate": 0.00019878905881817252,
213
+ "loss": 1.2543,
214
+ "step": 27
215
+ },
216
+ {
217
+ "epoch": 0.3,
218
+ "grad_norm": 0.3976779691989045,
219
+ "learning_rate": 0.00019865108401872857,
220
+ "loss": 1.2431,
221
+ "step": 28
222
+ },
223
+ {
224
+ "epoch": 0.31,
225
+ "grad_norm": 0.4992861718630414,
226
+ "learning_rate": 0.00019850572021962788,
227
+ "loss": 1.2471,
228
+ "step": 29
229
+ },
230
+ {
231
+ "epoch": 0.32,
232
+ "grad_norm": 0.33729072192890136,
233
+ "learning_rate": 0.00019835297830866826,
234
+ "loss": 1.1933,
235
+ "step": 30
236
+ },
237
+ {
238
+ "epoch": 0.33,
239
+ "grad_norm": 0.29373457949318904,
240
+ "learning_rate": 0.00019819286972627066,
241
+ "loss": 1.1761,
242
+ "step": 31
243
+ },
244
+ {
245
+ "epoch": 0.34,
246
+ "grad_norm": 0.5339184947140588,
247
+ "learning_rate": 0.0001980254064646223,
248
+ "loss": 1.165,
249
+ "step": 32
250
+ },
251
+ {
252
+ "epoch": 0.35,
253
+ "grad_norm": 0.38755069216510263,
254
+ "learning_rate": 0.00019785060106677818,
255
+ "loss": 1.1236,
256
+ "step": 33
257
+ },
258
+ {
259
+ "epoch": 0.36,
260
+ "grad_norm": 0.338373181403367,
261
+ "learning_rate": 0.00019766846662572191,
262
+ "loss": 1.2102,
263
+ "step": 34
264
+ },
265
+ {
266
+ "epoch": 0.37,
267
+ "grad_norm": 0.39237714718744304,
268
+ "learning_rate": 0.00019747901678338496,
269
+ "loss": 1.1642,
270
+ "step": 35
271
+ },
272
+ {
273
+ "epoch": 0.38,
274
+ "grad_norm": 0.3614249847081747,
275
+ "learning_rate": 0.00019728226572962473,
276
+ "loss": 1.1387,
277
+ "step": 36
278
+ },
279
+ {
280
+ "epoch": 0.4,
281
+ "grad_norm": 0.28278007479509987,
282
+ "learning_rate": 0.00019707822820116193,
283
+ "loss": 1.0939,
284
+ "step": 37
285
+ },
286
+ {
287
+ "epoch": 0.41,
288
+ "grad_norm": 0.3008254873268798,
289
+ "learning_rate": 0.00019686691948047664,
290
+ "loss": 1.1346,
291
+ "step": 38
292
+ },
293
+ {
294
+ "epoch": 0.42,
295
+ "grad_norm": 0.4263010439416343,
296
+ "learning_rate": 0.0001966483553946637,
297
+ "loss": 1.1015,
298
+ "step": 39
299
+ },
300
+ {
301
+ "epoch": 0.43,
302
+ "grad_norm": 0.32725448028464205,
303
+ "learning_rate": 0.00019642255231424729,
304
+ "loss": 1.1324,
305
+ "step": 40
306
+ },
307
+ {
308
+ "epoch": 0.44,
309
+ "grad_norm": 0.3028242900588441,
310
+ "learning_rate": 0.00019618952715195475,
311
+ "loss": 1.1147,
312
+ "step": 41
313
+ },
314
+ {
315
+ "epoch": 0.45,
316
+ "grad_norm": 0.33893311928252234,
317
+ "learning_rate": 0.00019594929736144976,
318
+ "loss": 1.0978,
319
+ "step": 42
320
+ },
321
+ {
322
+ "epoch": 0.46,
323
+ "grad_norm": 0.2786082334492372,
324
+ "learning_rate": 0.0001957018809360251,
325
+ "loss": 1.0933,
326
+ "step": 43
327
+ },
328
+ {
329
+ "epoch": 0.47,
330
+ "grad_norm": 0.2732185168098956,
331
+ "learning_rate": 0.00019544729640725498,
332
+ "loss": 1.084,
333
+ "step": 44
334
+ },
335
+ {
336
+ "epoch": 0.48,
337
+ "grad_norm": 0.33386436894143035,
338
+ "learning_rate": 0.00019518556284360696,
339
+ "loss": 1.0673,
340
+ "step": 45
341
+ },
342
+ {
343
+ "epoch": 0.49,
344
+ "grad_norm": 0.2761688734050621,
345
+ "learning_rate": 0.00019491669984901379,
346
+ "loss": 1.0523,
347
+ "step": 46
348
+ },
349
+ {
350
+ "epoch": 0.5,
351
+ "grad_norm": 0.3346957388610895,
352
+ "learning_rate": 0.00019464072756140486,
353
+ "loss": 1.0913,
354
+ "step": 47
355
+ },
356
+ {
357
+ "epoch": 0.51,
358
+ "grad_norm": 0.30196058996924285,
359
+ "learning_rate": 0.0001943576666511982,
360
+ "loss": 1.1165,
361
+ "step": 48
362
+ },
363
+ {
364
+ "epoch": 0.51,
365
+ "eval_loss": 1.167867660522461,
366
+ "eval_runtime": 119.1485,
367
+ "eval_samples_per_second": 8.384,
368
+ "eval_steps_per_second": 0.529,
369
+ "step": 48
370
+ },
371
+ {
372
+ "epoch": 0.52,
373
+ "grad_norm": 0.27445390350987153,
374
+ "learning_rate": 0.00019406753831975203,
375
+ "loss": 1.1069,
376
+ "step": 49
377
+ },
378
+ {
379
+ "epoch": 0.53,
380
+ "grad_norm": 0.34729097228771255,
381
+ "learning_rate": 0.00019377036429777672,
382
+ "loss": 1.0567,
383
+ "step": 50
384
+ },
385
+ {
386
+ "epoch": 0.54,
387
+ "grad_norm": 0.31314016575739406,
388
+ "learning_rate": 0.0001934661668437073,
389
+ "loss": 1.0875,
390
+ "step": 51
391
+ },
392
+ {
393
+ "epoch": 0.56,
394
+ "grad_norm": 0.29140014335226905,
395
+ "learning_rate": 0.0001931549687420364,
396
+ "loss": 1.0929,
397
+ "step": 52
398
+ },
399
+ {
400
+ "epoch": 0.57,
401
+ "grad_norm": 0.2638104110161505,
402
+ "learning_rate": 0.00019283679330160726,
403
+ "loss": 1.0963,
404
+ "step": 53
405
+ },
406
+ {
407
+ "epoch": 0.58,
408
+ "grad_norm": 0.2833945318119855,
409
+ "learning_rate": 0.0001925116643538684,
410
+ "loss": 1.0535,
411
+ "step": 54
412
+ },
413
+ {
414
+ "epoch": 0.59,
415
+ "grad_norm": 0.28672689795285417,
416
+ "learning_rate": 0.0001921796062510882,
417
+ "loss": 1.0699,
418
+ "step": 55
419
+ },
420
+ {
421
+ "epoch": 0.6,
422
+ "grad_norm": 0.261255409262294,
423
+ "learning_rate": 0.00019184064386453128,
424
+ "loss": 1.0658,
425
+ "step": 56
426
+ },
427
+ {
428
+ "epoch": 0.61,
429
+ "grad_norm": 0.24304864434604007,
430
+ "learning_rate": 0.00019149480258259533,
431
+ "loss": 1.0441,
432
+ "step": 57
433
+ },
434
+ {
435
+ "epoch": 0.62,
436
+ "grad_norm": 0.2987107937915846,
437
+ "learning_rate": 0.00019114210830890969,
438
+ "loss": 1.0061,
439
+ "step": 58
440
+ },
441
+ {
442
+ "epoch": 0.63,
443
+ "grad_norm": 0.2617045441373282,
444
+ "learning_rate": 0.00019078258746039507,
445
+ "loss": 1.0578,
446
+ "step": 59
447
+ },
448
+ {
449
+ "epoch": 0.64,
450
+ "grad_norm": 0.2577955355987167,
451
+ "learning_rate": 0.00019041626696528503,
452
+ "loss": 1.0333,
453
+ "step": 60
454
+ },
455
+ {
456
+ "epoch": 0.65,
457
+ "grad_norm": 0.2823058812174375,
458
+ "learning_rate": 0.0001900431742611089,
459
+ "loss": 1.0837,
460
+ "step": 61
461
+ },
462
+ {
463
+ "epoch": 0.66,
464
+ "grad_norm": 0.30425238718712166,
465
+ "learning_rate": 0.00018966333729263674,
466
+ "loss": 1.0619,
467
+ "step": 62
468
+ },
469
+ {
470
+ "epoch": 0.67,
471
+ "grad_norm": 0.29826831116146957,
472
+ "learning_rate": 0.0001892767845097864,
473
+ "loss": 1.056,
474
+ "step": 63
475
+ },
476
+ {
477
+ "epoch": 0.68,
478
+ "grad_norm": 0.22990267950533677,
479
+ "learning_rate": 0.00018888354486549237,
480
+ "loss": 1.061,
481
+ "step": 64
482
+ },
483
+ {
484
+ "epoch": 0.69,
485
+ "grad_norm": 0.27604852373975236,
486
+ "learning_rate": 0.00018848364781353744,
487
+ "loss": 1.0624,
488
+ "step": 65
489
+ },
490
+ {
491
+ "epoch": 0.7,
492
+ "grad_norm": 0.302101014156969,
493
+ "learning_rate": 0.00018807712330634642,
494
+ "loss": 1.0965,
495
+ "step": 66
496
+ },
497
+ {
498
+ "epoch": 0.72,
499
+ "grad_norm": 0.2532153192142023,
500
+ "learning_rate": 0.00018766400179274286,
501
+ "loss": 1.0972,
502
+ "step": 67
503
+ },
504
+ {
505
+ "epoch": 0.73,
506
+ "grad_norm": 0.23803088057755897,
507
+ "learning_rate": 0.00018724431421566823,
508
+ "loss": 1.0823,
509
+ "step": 68
510
+ },
511
+ {
512
+ "epoch": 0.74,
513
+ "grad_norm": 0.2200041903156331,
514
+ "learning_rate": 0.0001868180920098644,
515
+ "loss": 1.037,
516
+ "step": 69
517
+ },
518
+ {
519
+ "epoch": 0.75,
520
+ "grad_norm": 0.31123761066229655,
521
+ "learning_rate": 0.00018638536709951917,
522
+ "loss": 1.0689,
523
+ "step": 70
524
+ },
525
+ {
526
+ "epoch": 0.76,
527
+ "grad_norm": 0.2760757149384919,
528
+ "learning_rate": 0.00018594617189587512,
529
+ "loss": 1.0071,
530
+ "step": 71
531
+ },
532
+ {
533
+ "epoch": 0.77,
534
+ "grad_norm": 0.2452672521810973,
535
+ "learning_rate": 0.00018550053929480202,
536
+ "loss": 1.0711,
537
+ "step": 72
538
+ },
539
+ {
540
+ "epoch": 0.77,
541
+ "eval_loss": 1.1377497911453247,
542
+ "eval_runtime": 119.461,
543
+ "eval_samples_per_second": 8.363,
544
+ "eval_steps_per_second": 0.527,
545
+ "step": 72
546
+ },
547
+ {
548
+ "epoch": 0.78,
549
+ "grad_norm": 0.30897216290479246,
550
+ "learning_rate": 0.0001850485026743328,
551
+ "loss": 1.0508,
552
+ "step": 73
553
+ },
554
+ {
555
+ "epoch": 0.79,
556
+ "grad_norm": 0.24165903393157925,
557
+ "learning_rate": 0.00018459009589216364,
558
+ "loss": 1.046,
559
+ "step": 74
560
+ },
561
+ {
562
+ "epoch": 0.8,
563
+ "grad_norm": 0.2509819208307879,
564
+ "learning_rate": 0.00018412535328311814,
565
+ "loss": 1.0726,
566
+ "step": 75
567
+ },
568
+ {
569
+ "epoch": 0.81,
570
+ "grad_norm": 0.26145395006758515,
571
+ "learning_rate": 0.00018365430965657526,
572
+ "loss": 0.9998,
573
+ "step": 76
574
+ },
575
+ {
576
+ "epoch": 0.82,
577
+ "grad_norm": 0.26920709605794424,
578
+ "learning_rate": 0.00018317700029386245,
579
+ "loss": 1.065,
580
+ "step": 77
581
+ },
582
+ {
583
+ "epoch": 0.83,
584
+ "grad_norm": 0.24226754926786417,
585
+ "learning_rate": 0.0001826934609456129,
586
+ "loss": 1.0489,
587
+ "step": 78
588
+ },
589
+ {
590
+ "epoch": 0.84,
591
+ "grad_norm": 0.3022365661006827,
592
+ "learning_rate": 0.00018220372782908777,
593
+ "loss": 1.0372,
594
+ "step": 79
595
+ },
596
+ {
597
+ "epoch": 0.85,
598
+ "grad_norm": 0.25795710005352673,
599
+ "learning_rate": 0.00018170783762546365,
600
+ "loss": 1.0128,
601
+ "step": 80
602
+ },
603
+ {
604
+ "epoch": 0.86,
605
+ "grad_norm": 0.3490748875058354,
606
+ "learning_rate": 0.00018120582747708502,
607
+ "loss": 1.0168,
608
+ "step": 81
609
+ },
610
+ {
611
+ "epoch": 0.88,
612
+ "grad_norm": 0.24938209735120945,
613
+ "learning_rate": 0.00018069773498468223,
614
+ "loss": 0.9586,
615
+ "step": 82
616
+ },
617
+ {
618
+ "epoch": 0.89,
619
+ "grad_norm": 0.2527612545099894,
620
+ "learning_rate": 0.00018018359820455536,
621
+ "loss": 1.0385,
622
+ "step": 83
623
+ },
624
+ {
625
+ "epoch": 0.9,
626
+ "grad_norm": 0.27528879975094916,
627
+ "learning_rate": 0.0001796634556457236,
628
+ "loss": 1.0328,
629
+ "step": 84
630
+ },
631
+ {
632
+ "epoch": 0.91,
633
+ "grad_norm": 0.2605002777661913,
634
+ "learning_rate": 0.0001791373462670411,
635
+ "loss": 0.9966,
636
+ "step": 85
637
+ },
638
+ {
639
+ "epoch": 0.92,
640
+ "grad_norm": 0.3117107796665858,
641
+ "learning_rate": 0.00017860530947427875,
642
+ "loss": 0.9772,
643
+ "step": 86
644
+ },
645
+ {
646
+ "epoch": 0.93,
647
+ "grad_norm": 0.28336227154677734,
648
+ "learning_rate": 0.0001780673851171728,
649
+ "loss": 1.0724,
650
+ "step": 87
651
+ },
652
+ {
653
+ "epoch": 0.94,
654
+ "grad_norm": 0.42707817919652674,
655
+ "learning_rate": 0.0001775236134864401,
656
+ "loss": 1.0038,
657
+ "step": 88
658
+ },
659
+ {
660
+ "epoch": 0.95,
661
+ "grad_norm": 0.29236016959846456,
662
+ "learning_rate": 0.0001769740353107602,
663
+ "loss": 1.0083,
664
+ "step": 89
665
+ },
666
+ {
667
+ "epoch": 0.96,
668
+ "grad_norm": 0.43295063403530637,
669
+ "learning_rate": 0.00017641869175372493,
670
+ "loss": 1.022,
671
+ "step": 90
672
+ },
673
+ {
674
+ "epoch": 0.97,
675
+ "grad_norm": 0.3086663897043129,
676
+ "learning_rate": 0.00017585762441075503,
677
+ "loss": 1.0303,
678
+ "step": 91
679
+ },
680
+ {
681
+ "epoch": 0.98,
682
+ "grad_norm": 0.2783768981163154,
683
+ "learning_rate": 0.0001752908753059849,
684
+ "loss": 1.061,
685
+ "step": 92
686
+ },
687
+ {
688
+ "epoch": 0.99,
689
+ "grad_norm": 0.43168501819843275,
690
+ "learning_rate": 0.00017471848688911464,
691
+ "loss": 1.0631,
692
+ "step": 93
693
+ },
694
+ {
695
+ "epoch": 1.0,
696
+ "grad_norm": 0.25487494913299935,
697
+ "learning_rate": 0.0001741405020322309,
698
+ "loss": 0.9858,
699
+ "step": 94
700
+ },
701
+ {
702
+ "epoch": 1.01,
703
+ "grad_norm": 0.3229761094582219,
704
+ "learning_rate": 0.00017355696402659548,
705
+ "loss": 0.9495,
706
+ "step": 95
707
+ },
708
+ {
709
+ "epoch": 1.02,
710
+ "grad_norm": 0.3178464701266748,
711
+ "learning_rate": 0.000172967916579403,
712
+ "loss": 0.9546,
713
+ "step": 96
714
+ },
715
+ {
716
+ "epoch": 1.02,
717
+ "eval_loss": 1.1303094625473022,
718
+ "eval_runtime": 119.6761,
719
+ "eval_samples_per_second": 8.348,
720
+ "eval_steps_per_second": 0.526,
721
+ "step": 96
722
+ },
723
+ {
724
+ "epoch": 1.04,
725
+ "grad_norm": 0.2534616980189548,
726
+ "learning_rate": 0.00017237340381050703,
727
+ "loss": 0.9509,
728
+ "step": 97
729
+ },
730
+ {
731
+ "epoch": 1.05,
732
+ "grad_norm": 0.2354382873554396,
733
+ "learning_rate": 0.00017177347024911562,
734
+ "loss": 0.9611,
735
+ "step": 98
736
+ },
737
+ {
738
+ "epoch": 1.06,
739
+ "grad_norm": 0.2754259154521738,
740
+ "learning_rate": 0.00017116816083045602,
741
+ "loss": 0.9184,
742
+ "step": 99
743
+ },
744
+ {
745
+ "epoch": 1.07,
746
+ "grad_norm": 0.25868181129480755,
747
+ "learning_rate": 0.00017055752089240907,
748
+ "loss": 0.957,
749
+ "step": 100
750
+ },
751
+ {
752
+ "epoch": 1.08,
753
+ "grad_norm": 0.2383943586330267,
754
+ "learning_rate": 0.00016994159617211317,
755
+ "loss": 0.9638,
756
+ "step": 101
757
+ },
758
+ {
759
+ "epoch": 1.09,
760
+ "grad_norm": 0.2706420372628291,
761
+ "learning_rate": 0.0001693204328025389,
762
+ "loss": 0.9115,
763
+ "step": 102
764
+ },
765
+ {
766
+ "epoch": 1.1,
767
+ "grad_norm": 0.2751042656041904,
768
+ "learning_rate": 0.0001686940773090333,
769
+ "loss": 0.9277,
770
+ "step": 103
771
+ },
772
+ {
773
+ "epoch": 1.11,
774
+ "grad_norm": 0.27700872737428867,
775
+ "learning_rate": 0.00016806257660583534,
776
+ "loss": 0.9248,
777
+ "step": 104
778
+ },
779
+ {
780
+ "epoch": 1.12,
781
+ "grad_norm": 0.3350046312844708,
782
+ "learning_rate": 0.00016742597799256182,
783
+ "loss": 0.928,
784
+ "step": 105
785
+ },
786
+ {
787
+ "epoch": 1.13,
788
+ "grad_norm": 0.4055944986440079,
789
+ "learning_rate": 0.00016678432915066488,
790
+ "loss": 0.9074,
791
+ "step": 106
792
+ },
793
+ {
794
+ "epoch": 1.14,
795
+ "grad_norm": 0.2515177402600531,
796
+ "learning_rate": 0.00016613767813986044,
797
+ "loss": 0.9564,
798
+ "step": 107
799
+ },
800
+ {
801
+ "epoch": 1.15,
802
+ "grad_norm": 0.2571149695502646,
803
+ "learning_rate": 0.00016548607339452853,
804
+ "loss": 0.93,
805
+ "step": 108
806
+ },
807
+ {
808
+ "epoch": 1.16,
809
+ "grad_norm": 0.38608942941048996,
810
+ "learning_rate": 0.0001648295637200856,
811
+ "loss": 0.9281,
812
+ "step": 109
813
+ },
814
+ {
815
+ "epoch": 1.17,
816
+ "grad_norm": 0.31939838976976676,
817
+ "learning_rate": 0.000164168198289329,
818
+ "loss": 0.9914,
819
+ "step": 110
820
+ },
821
+ {
822
+ "epoch": 1.19,
823
+ "grad_norm": 0.30504937567650897,
824
+ "learning_rate": 0.00016350202663875386,
825
+ "loss": 0.9549,
826
+ "step": 111
827
+ },
828
+ {
829
+ "epoch": 1.2,
830
+ "grad_norm": 0.3320388344291162,
831
+ "learning_rate": 0.0001628310986648427,
832
+ "loss": 0.9086,
833
+ "step": 112
834
+ },
835
+ {
836
+ "epoch": 1.21,
837
+ "grad_norm": 0.27715569151296165,
838
+ "learning_rate": 0.0001621554646203284,
839
+ "loss": 0.8537,
840
+ "step": 113
841
+ },
842
+ {
843
+ "epoch": 1.22,
844
+ "grad_norm": 0.278787508566418,
845
+ "learning_rate": 0.0001614751751104301,
846
+ "loss": 0.9354,
847
+ "step": 114
848
+ },
849
+ {
850
+ "epoch": 1.23,
851
+ "grad_norm": 0.24483614460003267,
852
+ "learning_rate": 0.00016079028108906282,
853
+ "loss": 0.8996,
854
+ "step": 115
855
+ },
856
+ {
857
+ "epoch": 1.24,
858
+ "grad_norm": 0.37520609596400134,
859
+ "learning_rate": 0.0001601008338550211,
860
+ "loss": 0.9514,
861
+ "step": 116
862
+ },
863
+ {
864
+ "epoch": 1.25,
865
+ "grad_norm": 0.2565631505653599,
866
+ "learning_rate": 0.00015940688504813662,
867
+ "loss": 0.8984,
868
+ "step": 117
869
+ },
870
+ {
871
+ "epoch": 1.26,
872
+ "grad_norm": 0.26348552476529935,
873
+ "learning_rate": 0.00015870848664541044,
874
+ "loss": 0.8941,
875
+ "step": 118
876
+ },
877
+ {
878
+ "epoch": 1.27,
879
+ "grad_norm": 0.32431198985496534,
880
+ "learning_rate": 0.00015800569095711982,
881
+ "loss": 0.8876,
882
+ "step": 119
883
+ },
884
+ {
885
+ "epoch": 1.28,
886
+ "grad_norm": 0.29308039763069227,
887
+ "learning_rate": 0.00015729855062290022,
888
+ "loss": 0.9309,
889
+ "step": 120
890
+ },
891
+ {
892
+ "epoch": 1.28,
893
+ "eval_loss": 1.129751205444336,
894
+ "eval_runtime": 119.1497,
895
+ "eval_samples_per_second": 8.384,
896
+ "eval_steps_per_second": 0.529,
897
+ "step": 120
898
+ },
899
+ {
900
+ "epoch": 1.29,
901
+ "grad_norm": 0.2793291380060977,
902
+ "learning_rate": 0.0001565871186078025,
903
+ "loss": 0.9453,
904
+ "step": 121
905
+ },
906
+ {
907
+ "epoch": 1.3,
908
+ "grad_norm": 0.28873644301555734,
909
+ "learning_rate": 0.000155871448198326,
910
+ "loss": 0.9243,
911
+ "step": 122
912
+ },
913
+ {
914
+ "epoch": 1.31,
915
+ "grad_norm": 0.3086103724578039,
916
+ "learning_rate": 0.00015515159299842707,
917
+ "loss": 0.8877,
918
+ "step": 123
919
+ },
920
+ {
921
+ "epoch": 1.32,
922
+ "grad_norm": 0.30407892484693505,
923
+ "learning_rate": 0.00015442760692550443,
924
+ "loss": 0.9448,
925
+ "step": 124
926
+ },
927
+ {
928
+ "epoch": 1.33,
929
+ "grad_norm": 0.29771602861368474,
930
+ "learning_rate": 0.00015369954420636048,
931
+ "loss": 0.889,
932
+ "step": 125
933
+ },
934
+ {
935
+ "epoch": 1.35,
936
+ "grad_norm": 0.30480490158838136,
937
+ "learning_rate": 0.00015296745937313987,
938
+ "loss": 0.9405,
939
+ "step": 126
940
+ },
941
+ {
942
+ "epoch": 1.36,
943
+ "grad_norm": 0.2949192855418127,
944
+ "learning_rate": 0.00015223140725924495,
945
+ "loss": 0.9382,
946
+ "step": 127
947
+ },
948
+ {
949
+ "epoch": 1.37,
950
+ "grad_norm": 0.2813631863132807,
951
+ "learning_rate": 0.00015149144299522873,
952
+ "loss": 0.9526,
953
+ "step": 128
954
+ },
955
+ {
956
+ "epoch": 1.38,
957
+ "grad_norm": 0.28548924064070513,
958
+ "learning_rate": 0.00015074762200466556,
959
+ "loss": 0.9174,
960
+ "step": 129
961
+ },
962
+ {
963
+ "epoch": 1.39,
964
+ "grad_norm": 0.28137053449960464,
965
+ "learning_rate": 0.00015000000000000001,
966
+ "loss": 0.9244,
967
+ "step": 130
968
+ },
969
+ {
970
+ "epoch": 1.4,
971
+ "grad_norm": 0.2626750895717777,
972
+ "learning_rate": 0.00014924863297837378,
973
+ "loss": 0.9335,
974
+ "step": 131
975
+ },
976
+ {
977
+ "epoch": 1.41,
978
+ "grad_norm": 0.26686502371015536,
979
+ "learning_rate": 0.00014849357721743168,
980
+ "loss": 0.8948,
981
+ "step": 132
982
+ },
983
+ {
984
+ "epoch": 1.42,
985
+ "grad_norm": 0.3332273481179679,
986
+ "learning_rate": 0.00014773488927110633,
987
+ "loss": 0.9274,
988
+ "step": 133
989
+ },
990
+ {
991
+ "epoch": 1.43,
992
+ "grad_norm": 0.2528048763375234,
993
+ "learning_rate": 0.00014697262596538227,
994
+ "loss": 0.8731,
995
+ "step": 134
996
+ },
997
+ {
998
+ "epoch": 1.44,
999
+ "grad_norm": 0.27184211707488076,
1000
+ "learning_rate": 0.00014620684439403962,
1001
+ "loss": 0.9318,
1002
+ "step": 135
1003
+ },
1004
+ {
1005
+ "epoch": 1.45,
1006
+ "grad_norm": 0.3051111137538683,
1007
+ "learning_rate": 0.0001454376019143779,
1008
+ "loss": 0.9447,
1009
+ "step": 136
1010
+ },
1011
+ {
1012
+ "epoch": 1.46,
1013
+ "grad_norm": 0.28771401659835155,
1014
+ "learning_rate": 0.00014466495614291977,
1015
+ "loss": 0.9343,
1016
+ "step": 137
1017
+ },
1018
+ {
1019
+ "epoch": 1.47,
1020
+ "grad_norm": 0.28995797921621524,
1021
+ "learning_rate": 0.0001438889649510956,
1022
+ "loss": 0.8978,
1023
+ "step": 138
1024
+ },
1025
+ {
1026
+ "epoch": 1.48,
1027
+ "grad_norm": 0.2749930548874636,
1028
+ "learning_rate": 0.00014310968646090883,
1029
+ "loss": 0.924,
1030
+ "step": 139
1031
+ },
1032
+ {
1033
+ "epoch": 1.49,
1034
+ "grad_norm": 0.3097189537380989,
1035
+ "learning_rate": 0.0001423271790405828,
1036
+ "loss": 0.9574,
1037
+ "step": 140
1038
+ },
1039
+ {
1040
+ "epoch": 1.51,
1041
+ "grad_norm": 0.2449218990319832,
1042
+ "learning_rate": 0.00014154150130018866,
1043
+ "loss": 0.8475,
1044
+ "step": 141
1045
+ },
1046
+ {
1047
+ "epoch": 1.52,
1048
+ "grad_norm": 0.24856388098419674,
1049
+ "learning_rate": 0.0001407527120872557,
1050
+ "loss": 0.9381,
1051
+ "step": 142
1052
+ },
1053
+ {
1054
+ "epoch": 1.53,
1055
+ "grad_norm": 0.3169861882853132,
1056
+ "learning_rate": 0.00013996087048236358,
1057
+ "loss": 0.9141,
1058
+ "step": 143
1059
+ },
1060
+ {
1061
+ "epoch": 1.54,
1062
+ "grad_norm": 0.30689184261103974,
1063
+ "learning_rate": 0.00013916603579471705,
1064
+ "loss": 0.9588,
1065
+ "step": 144
1066
+ },
1067
+ {
1068
+ "epoch": 1.54,
1069
+ "eval_loss": 1.1242448091506958,
1070
+ "eval_runtime": 119.0725,
1071
+ "eval_samples_per_second": 8.39,
1072
+ "eval_steps_per_second": 0.529,
1073
+ "step": 144
1074
+ },
1075
+ {
1076
+ "epoch": 1.55,
1077
+ "grad_norm": 0.2961514212977567,
1078
+ "learning_rate": 0.00013836826755770384,
1079
+ "loss": 0.9371,
1080
+ "step": 145
1081
+ },
1082
+ {
1083
+ "epoch": 1.56,
1084
+ "grad_norm": 0.30790856503439346,
1085
+ "learning_rate": 0.00013756762552443553,
1086
+ "loss": 0.9612,
1087
+ "step": 146
1088
+ },
1089
+ {
1090
+ "epoch": 1.57,
1091
+ "grad_norm": 0.3517398492864053,
1092
+ "learning_rate": 0.000136764169663272,
1093
+ "loss": 0.9253,
1094
+ "step": 147
1095
+ },
1096
+ {
1097
+ "epoch": 1.58,
1098
+ "grad_norm": 0.26375798832515857,
1099
+ "learning_rate": 0.00013595796015332984,
1100
+ "loss": 0.8977,
1101
+ "step": 148
1102
+ },
1103
+ {
1104
+ "epoch": 1.59,
1105
+ "grad_norm": 0.274348892672977,
1106
+ "learning_rate": 0.00013514905737997473,
1107
+ "loss": 0.8817,
1108
+ "step": 149
1109
+ },
1110
+ {
1111
+ "epoch": 1.6,
1112
+ "grad_norm": 0.35917564750751624,
1113
+ "learning_rate": 0.00013433752193029886,
1114
+ "loss": 0.886,
1115
+ "step": 150
1116
+ },
1117
+ {
1118
+ "epoch": 1.61,
1119
+ "grad_norm": 0.38175124377914293,
1120
+ "learning_rate": 0.00013352341458858265,
1121
+ "loss": 0.8576,
1122
+ "step": 151
1123
+ },
1124
+ {
1125
+ "epoch": 1.62,
1126
+ "grad_norm": 0.249633953215678,
1127
+ "learning_rate": 0.00013270679633174218,
1128
+ "loss": 1.0066,
1129
+ "step": 152
1130
+ },
1131
+ {
1132
+ "epoch": 1.63,
1133
+ "grad_norm": 0.33494494430574784,
1134
+ "learning_rate": 0.00013188772832476188,
1135
+ "loss": 0.884,
1136
+ "step": 153
1137
+ },
1138
+ {
1139
+ "epoch": 1.64,
1140
+ "grad_norm": 0.4176467296744032,
1141
+ "learning_rate": 0.00013106627191611332,
1142
+ "loss": 0.9041,
1143
+ "step": 154
1144
+ },
1145
+ {
1146
+ "epoch": 1.65,
1147
+ "grad_norm": 0.27051479454532207,
1148
+ "learning_rate": 0.00013024248863316012,
1149
+ "loss": 0.8764,
1150
+ "step": 155
1151
+ },
1152
+ {
1153
+ "epoch": 1.67,
1154
+ "grad_norm": 0.29302599029848847,
1155
+ "learning_rate": 0.00012941644017754964,
1156
+ "loss": 0.9786,
1157
+ "step": 156
1158
+ },
1159
+ {
1160
+ "epoch": 1.68,
1161
+ "grad_norm": 0.3127378512248151,
1162
+ "learning_rate": 0.00012858818842059145,
1163
+ "loss": 0.9176,
1164
+ "step": 157
1165
+ },
1166
+ {
1167
+ "epoch": 1.69,
1168
+ "grad_norm": 0.40647077063662906,
1169
+ "learning_rate": 0.00012775779539862304,
1170
+ "loss": 0.9387,
1171
+ "step": 158
1172
+ },
1173
+ {
1174
+ "epoch": 1.7,
1175
+ "grad_norm": 0.29290601694481777,
1176
+ "learning_rate": 0.00012692532330836346,
1177
+ "loss": 0.9192,
1178
+ "step": 159
1179
+ },
1180
+ {
1181
+ "epoch": 1.71,
1182
+ "grad_norm": 0.2819168741245354,
1183
+ "learning_rate": 0.0001260908345022547,
1184
+ "loss": 0.9253,
1185
+ "step": 160
1186
+ },
1187
+ {
1188
+ "epoch": 1.72,
1189
+ "grad_norm": 0.3772714091394927,
1190
+ "learning_rate": 0.00012525439148379128,
1191
+ "loss": 0.9264,
1192
+ "step": 161
1193
+ },
1194
+ {
1195
+ "epoch": 1.73,
1196
+ "grad_norm": 0.29399851067321503,
1197
+ "learning_rate": 0.00012441605690283915,
1198
+ "loss": 0.9357,
1199
+ "step": 162
1200
+ },
1201
+ {
1202
+ "epoch": 1.74,
1203
+ "grad_norm": 0.2623180246832513,
1204
+ "learning_rate": 0.00012357589355094275,
1205
+ "loss": 0.8516,
1206
+ "step": 163
1207
+ },
1208
+ {
1209
+ "epoch": 1.75,
1210
+ "grad_norm": 0.27796942024085824,
1211
+ "learning_rate": 0.00012273396435662212,
1212
+ "loss": 0.9328,
1213
+ "step": 164
1214
+ },
1215
+ {
1216
+ "epoch": 1.76,
1217
+ "grad_norm": 0.3107670297529076,
1218
+ "learning_rate": 0.0001218903323806595,
1219
+ "loss": 0.8769,
1220
+ "step": 165
1221
+ },
1222
+ {
1223
+ "epoch": 1.77,
1224
+ "grad_norm": 0.2865573350738354,
1225
+ "learning_rate": 0.00012104506081137608,
1226
+ "loss": 0.9015,
1227
+ "step": 166
1228
+ },
1229
+ {
1230
+ "epoch": 1.78,
1231
+ "grad_norm": 0.30595087117636693,
1232
+ "learning_rate": 0.00012019821295989912,
1233
+ "loss": 0.94,
1234
+ "step": 167
1235
+ },
1236
+ {
1237
+ "epoch": 1.79,
1238
+ "grad_norm": 0.32540365653257874,
1239
+ "learning_rate": 0.00011934985225541998,
1240
+ "loss": 0.8553,
1241
+ "step": 168
1242
+ },
1243
+ {
1244
+ "epoch": 1.79,
1245
+ "eval_loss": 1.1259374618530273,
1246
+ "eval_runtime": 119.4351,
1247
+ "eval_samples_per_second": 8.364,
1248
+ "eval_steps_per_second": 0.527,
1249
+ "step": 168
1250
+ },
1251
+ {
1252
+ "epoch": 1.8,
1253
+ "grad_norm": 0.3058868303314457,
1254
+ "learning_rate": 0.00011850004224044315,
1255
+ "loss": 0.9074,
1256
+ "step": 169
1257
+ },
1258
+ {
1259
+ "epoch": 1.81,
1260
+ "grad_norm": 0.33266760488242775,
1261
+ "learning_rate": 0.0001176488465660271,
1262
+ "loss": 0.8799,
1263
+ "step": 170
1264
+ },
1265
+ {
1266
+ "epoch": 1.83,
1267
+ "grad_norm": 0.3101183375673487,
1268
+ "learning_rate": 0.00011679632898701649,
1269
+ "loss": 0.9004,
1270
+ "step": 171
1271
+ },
1272
+ {
1273
+ "epoch": 1.84,
1274
+ "grad_norm": 0.31535579418195775,
1275
+ "learning_rate": 0.00011594255335726724,
1276
+ "loss": 0.9238,
1277
+ "step": 172
1278
+ },
1279
+ {
1280
+ "epoch": 1.85,
1281
+ "grad_norm": 0.28341827112854334,
1282
+ "learning_rate": 0.00011508758362486358,
1283
+ "loss": 0.9138,
1284
+ "step": 173
1285
+ },
1286
+ {
1287
+ "epoch": 1.86,
1288
+ "grad_norm": 0.25699888796695625,
1289
+ "learning_rate": 0.00011423148382732853,
1290
+ "loss": 0.9175,
1291
+ "step": 174
1292
+ },
1293
+ {
1294
+ "epoch": 1.87,
1295
+ "grad_norm": 0.29504332662698246,
1296
+ "learning_rate": 0.0001133743180868273,
1297
+ "loss": 0.9023,
1298
+ "step": 175
1299
+ },
1300
+ {
1301
+ "epoch": 1.88,
1302
+ "grad_norm": 0.2993175263873948,
1303
+ "learning_rate": 0.0001125161506053646,
1304
+ "loss": 0.8893,
1305
+ "step": 176
1306
+ },
1307
+ {
1308
+ "epoch": 1.89,
1309
+ "grad_norm": 0.2762659379409218,
1310
+ "learning_rate": 0.00011165704565997593,
1311
+ "loss": 0.9071,
1312
+ "step": 177
1313
+ },
1314
+ {
1315
+ "epoch": 1.9,
1316
+ "grad_norm": 0.23620994229530515,
1317
+ "learning_rate": 0.00011079706759791311,
1318
+ "loss": 0.8796,
1319
+ "step": 178
1320
+ },
1321
+ {
1322
+ "epoch": 1.91,
1323
+ "grad_norm": 0.28317619721877,
1324
+ "learning_rate": 0.00010993628083182467,
1325
+ "loss": 0.8983,
1326
+ "step": 179
1327
+ },
1328
+ {
1329
+ "epoch": 1.92,
1330
+ "grad_norm": 0.3252854551640304,
1331
+ "learning_rate": 0.00010907474983493144,
1332
+ "loss": 0.8947,
1333
+ "step": 180
1334
+ },
1335
+ {
1336
+ "epoch": 1.93,
1337
+ "grad_norm": 0.2579136274422669,
1338
+ "learning_rate": 0.00010821253913619726,
1339
+ "loss": 0.8726,
1340
+ "step": 181
1341
+ },
1342
+ {
1343
+ "epoch": 1.94,
1344
+ "grad_norm": 0.27201912720918364,
1345
+ "learning_rate": 0.00010734971331549603,
1346
+ "loss": 0.891,
1347
+ "step": 182
1348
+ },
1349
+ {
1350
+ "epoch": 1.95,
1351
+ "grad_norm": 0.41257277193589503,
1352
+ "learning_rate": 0.0001064863369987743,
1353
+ "loss": 0.9188,
1354
+ "step": 183
1355
+ },
1356
+ {
1357
+ "epoch": 1.96,
1358
+ "grad_norm": 0.264920112831242,
1359
+ "learning_rate": 0.00010562247485321115,
1360
+ "loss": 0.8761,
1361
+ "step": 184
1362
+ },
1363
+ {
1364
+ "epoch": 1.98,
1365
+ "grad_norm": 0.28166441056422037,
1366
+ "learning_rate": 0.00010475819158237425,
1367
+ "loss": 0.8805,
1368
+ "step": 185
1369
+ },
1370
+ {
1371
+ "epoch": 1.99,
1372
+ "grad_norm": 0.2818961139392159,
1373
+ "learning_rate": 0.00010389355192137377,
1374
+ "loss": 0.8934,
1375
+ "step": 186
1376
+ },
1377
+ {
1378
+ "epoch": 2.0,
1379
+ "grad_norm": 0.27424787600345923,
1380
+ "learning_rate": 0.00010302862063201367,
1381
+ "loss": 0.9237,
1382
+ "step": 187
1383
+ },
1384
+ {
1385
+ "epoch": 2.01,
1386
+ "grad_norm": 0.25570082666079225,
1387
+ "learning_rate": 0.00010216346249794087,
1388
+ "loss": 0.8656,
1389
+ "step": 188
1390
+ },
1391
+ {
1392
+ "epoch": 2.02,
1393
+ "grad_norm": 0.2712359904481713,
1394
+ "learning_rate": 0.0001012981423197931,
1395
+ "loss": 0.7627,
1396
+ "step": 189
1397
+ },
1398
+ {
1399
+ "epoch": 2.03,
1400
+ "grad_norm": 0.25054404547068676,
1401
+ "learning_rate": 0.00010043272491034523,
1402
+ "loss": 0.8142,
1403
+ "step": 190
1404
+ },
1405
+ {
1406
+ "epoch": 2.04,
1407
+ "grad_norm": 0.28520868420260026,
1408
+ "learning_rate": 9.956727508965481e-05,
1409
+ "loss": 0.7953,
1410
+ "step": 191
1411
+ },
1412
+ {
1413
+ "epoch": 2.05,
1414
+ "grad_norm": 0.29413880984694873,
1415
+ "learning_rate": 9.870185768020693e-05,
1416
+ "loss": 0.8231,
1417
+ "step": 192
1418
+ },
1419
+ {
1420
+ "epoch": 2.05,
1421
+ "eval_loss": 1.144862413406372,
1422
+ "eval_runtime": 119.3004,
1423
+ "eval_samples_per_second": 8.374,
1424
+ "eval_steps_per_second": 0.528,
1425
+ "step": 192
1426
+ },
1427
+ {
1428
+ "epoch": 2.06,
1429
+ "grad_norm": 0.28378300985247035,
1430
+ "learning_rate": 9.783653750205915e-05,
1431
+ "loss": 0.7478,
1432
+ "step": 193
1433
+ },
1434
+ {
1435
+ "epoch": 2.07,
1436
+ "grad_norm": 0.31792721348179676,
1437
+ "learning_rate": 9.697137936798634e-05,
1438
+ "loss": 0.7961,
1439
+ "step": 194
1440
+ },
1441
+ {
1442
+ "epoch": 2.08,
1443
+ "grad_norm": 0.3291666436295964,
1444
+ "learning_rate": 9.610644807862625e-05,
1445
+ "loss": 0.7434,
1446
+ "step": 195
1447
+ },
1448
+ {
1449
+ "epoch": 2.09,
1450
+ "grad_norm": 0.301579259001567,
1451
+ "learning_rate": 9.524180841762577e-05,
1452
+ "loss": 0.7779,
1453
+ "step": 196
1454
+ },
1455
+ {
1456
+ "epoch": 2.1,
1457
+ "grad_norm": 0.30252161240414444,
1458
+ "learning_rate": 9.437752514678887e-05,
1459
+ "loss": 0.7689,
1460
+ "step": 197
1461
+ },
1462
+ {
1463
+ "epoch": 2.11,
1464
+ "grad_norm": 0.3350657085129171,
1465
+ "learning_rate": 9.35136630012257e-05,
1466
+ "loss": 0.7574,
1467
+ "step": 198
1468
+ },
1469
+ {
1470
+ "epoch": 2.12,
1471
+ "grad_norm": 0.3053109929956358,
1472
+ "learning_rate": 9.265028668450402e-05,
1473
+ "loss": 0.7729,
1474
+ "step": 199
1475
+ },
1476
+ {
1477
+ "epoch": 2.14,
1478
+ "grad_norm": 0.30367223609567207,
1479
+ "learning_rate": 9.178746086380275e-05,
1480
+ "loss": 0.8111,
1481
+ "step": 200
1482
+ },
1483
+ {
1484
+ "epoch": 2.15,
1485
+ "grad_norm": 0.3366440949136126,
1486
+ "learning_rate": 9.092525016506858e-05,
1487
+ "loss": 0.7986,
1488
+ "step": 201
1489
+ },
1490
+ {
1491
+ "epoch": 2.16,
1492
+ "grad_norm": 0.3228036608413652,
1493
+ "learning_rate": 9.006371916817534e-05,
1494
+ "loss": 0.8382,
1495
+ "step": 202
1496
+ },
1497
+ {
1498
+ "epoch": 2.17,
1499
+ "grad_norm": 0.2919040789403488,
1500
+ "learning_rate": 8.920293240208694e-05,
1501
+ "loss": 0.7696,
1502
+ "step": 203
1503
+ },
1504
+ {
1505
+ "epoch": 2.18,
1506
+ "grad_norm": 0.30084198177583166,
1507
+ "learning_rate": 8.83429543400241e-05,
1508
+ "loss": 0.7671,
1509
+ "step": 204
1510
+ },
1511
+ {
1512
+ "epoch": 2.19,
1513
+ "grad_norm": 0.33931609000743107,
1514
+ "learning_rate": 8.748384939463543e-05,
1515
+ "loss": 0.7553,
1516
+ "step": 205
1517
+ },
1518
+ {
1519
+ "epoch": 2.2,
1520
+ "grad_norm": 0.30413284924824485,
1521
+ "learning_rate": 8.662568191317273e-05,
1522
+ "loss": 0.7324,
1523
+ "step": 206
1524
+ },
1525
+ {
1526
+ "epoch": 2.21,
1527
+ "grad_norm": 0.3014038998090481,
1528
+ "learning_rate": 8.57685161726715e-05,
1529
+ "loss": 0.7567,
1530
+ "step": 207
1531
+ },
1532
+ {
1533
+ "epoch": 2.22,
1534
+ "grad_norm": 0.3176466329519527,
1535
+ "learning_rate": 8.491241637513644e-05,
1536
+ "loss": 0.8222,
1537
+ "step": 208
1538
+ },
1539
+ {
1540
+ "epoch": 2.23,
1541
+ "grad_norm": 0.29981213041628285,
1542
+ "learning_rate": 8.405744664273278e-05,
1543
+ "loss": 0.7077,
1544
+ "step": 209
1545
+ },
1546
+ {
1547
+ "epoch": 2.24,
1548
+ "grad_norm": 0.2937916452228122,
1549
+ "learning_rate": 8.320367101298351e-05,
1550
+ "loss": 0.7231,
1551
+ "step": 210
1552
+ },
1553
+ {
1554
+ "epoch": 2.25,
1555
+ "grad_norm": 0.32040684171320816,
1556
+ "learning_rate": 8.235115343397295e-05,
1557
+ "loss": 0.7556,
1558
+ "step": 211
1559
+ },
1560
+ {
1561
+ "epoch": 2.26,
1562
+ "grad_norm": 0.31083028085316033,
1563
+ "learning_rate": 8.149995775955686e-05,
1564
+ "loss": 0.7514,
1565
+ "step": 212
1566
+ },
1567
+ {
1568
+ "epoch": 2.27,
1569
+ "grad_norm": 0.3215465383581194,
1570
+ "learning_rate": 8.065014774458003e-05,
1571
+ "loss": 0.7933,
1572
+ "step": 213
1573
+ },
1574
+ {
1575
+ "epoch": 2.28,
1576
+ "grad_norm": 0.3081200259196015,
1577
+ "learning_rate": 7.980178704010089e-05,
1578
+ "loss": 0.8062,
1579
+ "step": 214
1580
+ },
1581
+ {
1582
+ "epoch": 2.3,
1583
+ "grad_norm": 0.3333248296288759,
1584
+ "learning_rate": 7.895493918862396e-05,
1585
+ "loss": 0.7784,
1586
+ "step": 215
1587
+ },
1588
+ {
1589
+ "epoch": 2.31,
1590
+ "grad_norm": 0.3301326097292383,
1591
+ "learning_rate": 7.810966761934053e-05,
1592
+ "loss": 0.8154,
1593
+ "step": 216
1594
+ },
1595
+ {
1596
+ "epoch": 2.31,
1597
+ "eval_loss": 1.1513652801513672,
1598
+ "eval_runtime": 119.4371,
1599
+ "eval_samples_per_second": 8.364,
1600
+ "eval_steps_per_second": 0.527,
1601
+ "step": 216
1602
+ },
1603
+ {
1604
+ "epoch": 2.32,
1605
+ "grad_norm": 0.3166760836422428,
1606
+ "learning_rate": 7.726603564337791e-05,
1607
+ "loss": 0.7486,
1608
+ "step": 217
1609
+ },
1610
+ {
1611
+ "epoch": 2.33,
1612
+ "grad_norm": 0.31309757318131876,
1613
+ "learning_rate": 7.642410644905726e-05,
1614
+ "loss": 0.771,
1615
+ "step": 218
1616
+ },
1617
+ {
1618
+ "epoch": 2.34,
1619
+ "grad_norm": 0.36968796131043985,
1620
+ "learning_rate": 7.558394309716088e-05,
1621
+ "loss": 0.8051,
1622
+ "step": 219
1623
+ },
1624
+ {
1625
+ "epoch": 2.35,
1626
+ "grad_norm": 0.27537675917328025,
1627
+ "learning_rate": 7.474560851620873e-05,
1628
+ "loss": 0.7536,
1629
+ "step": 220
1630
+ },
1631
+ {
1632
+ "epoch": 2.36,
1633
+ "grad_norm": 0.2878011945022053,
1634
+ "learning_rate": 7.390916549774536e-05,
1635
+ "loss": 0.8126,
1636
+ "step": 221
1637
+ },
1638
+ {
1639
+ "epoch": 2.37,
1640
+ "grad_norm": 0.3172405217395398,
1641
+ "learning_rate": 7.307467669163655e-05,
1642
+ "loss": 0.8156,
1643
+ "step": 222
1644
+ },
1645
+ {
1646
+ "epoch": 2.38,
1647
+ "grad_norm": 0.3183651086957915,
1648
+ "learning_rate": 7.224220460137701e-05,
1649
+ "loss": 0.7821,
1650
+ "step": 223
1651
+ },
1652
+ {
1653
+ "epoch": 2.39,
1654
+ "grad_norm": 0.3318078467573977,
1655
+ "learning_rate": 7.141181157940859e-05,
1656
+ "loss": 0.7993,
1657
+ "step": 224
1658
+ },
1659
+ {
1660
+ "epoch": 2.4,
1661
+ "grad_norm": 0.28446170407344085,
1662
+ "learning_rate": 7.058355982245037e-05,
1663
+ "loss": 0.7987,
1664
+ "step": 225
1665
+ },
1666
+ {
1667
+ "epoch": 2.41,
1668
+ "grad_norm": 0.33568352702219995,
1669
+ "learning_rate": 6.97575113668399e-05,
1670
+ "loss": 0.773,
1671
+ "step": 226
1672
+ },
1673
+ {
1674
+ "epoch": 2.42,
1675
+ "grad_norm": 0.30820575901544944,
1676
+ "learning_rate": 6.893372808388675e-05,
1677
+ "loss": 0.813,
1678
+ "step": 227
1679
+ },
1680
+ {
1681
+ "epoch": 2.43,
1682
+ "grad_norm": 0.3121364386024255,
1683
+ "learning_rate": 6.811227167523815e-05,
1684
+ "loss": 0.7716,
1685
+ "step": 228
1686
+ },
1687
+ {
1688
+ "epoch": 2.44,
1689
+ "grad_norm": 0.3211455560922844,
1690
+ "learning_rate": 6.729320366825784e-05,
1691
+ "loss": 0.7577,
1692
+ "step": 229
1693
+ },
1694
+ {
1695
+ "epoch": 2.46,
1696
+ "grad_norm": 0.3315601260165869,
1697
+ "learning_rate": 6.647658541141735e-05,
1698
+ "loss": 0.779,
1699
+ "step": 230
1700
+ },
1701
+ {
1702
+ "epoch": 2.47,
1703
+ "grad_norm": 0.35482236759964675,
1704
+ "learning_rate": 6.566247806970119e-05,
1705
+ "loss": 0.7936,
1706
+ "step": 231
1707
+ },
1708
+ {
1709
+ "epoch": 2.48,
1710
+ "grad_norm": 0.3318703205331905,
1711
+ "learning_rate": 6.485094262002529e-05,
1712
+ "loss": 0.7721,
1713
+ "step": 232
1714
+ },
1715
+ {
1716
+ "epoch": 2.49,
1717
+ "grad_norm": 0.313412585518615,
1718
+ "learning_rate": 6.404203984667019e-05,
1719
+ "loss": 0.7333,
1720
+ "step": 233
1721
+ },
1722
+ {
1723
+ "epoch": 2.5,
1724
+ "grad_norm": 0.3389693444254627,
1725
+ "learning_rate": 6.323583033672799e-05,
1726
+ "loss": 0.6991,
1727
+ "step": 234
1728
+ },
1729
+ {
1730
+ "epoch": 2.51,
1731
+ "grad_norm": 0.33056782619334757,
1732
+ "learning_rate": 6.243237447556449e-05,
1733
+ "loss": 0.7872,
1734
+ "step": 235
1735
+ },
1736
+ {
1737
+ "epoch": 2.52,
1738
+ "grad_norm": 0.3064085209522584,
1739
+ "learning_rate": 6.163173244229619e-05,
1740
+ "loss": 0.7713,
1741
+ "step": 236
1742
+ },
1743
+ {
1744
+ "epoch": 2.53,
1745
+ "grad_norm": 0.3109445125421656,
1746
+ "learning_rate": 6.083396420528298e-05,
1747
+ "loss": 0.8228,
1748
+ "step": 237
1749
+ },
1750
+ {
1751
+ "epoch": 2.54,
1752
+ "grad_norm": 0.35767207742703394,
1753
+ "learning_rate": 6.0039129517636435e-05,
1754
+ "loss": 0.8167,
1755
+ "step": 238
1756
+ },
1757
+ {
1758
+ "epoch": 2.55,
1759
+ "grad_norm": 0.32869196909020376,
1760
+ "learning_rate": 5.924728791274432e-05,
1761
+ "loss": 0.7893,
1762
+ "step": 239
1763
+ },
1764
+ {
1765
+ "epoch": 2.56,
1766
+ "grad_norm": 0.31178216743238674,
1767
+ "learning_rate": 5.845849869981137e-05,
1768
+ "loss": 0.7354,
1769
+ "step": 240
1770
+ },
1771
+ {
1772
+ "epoch": 2.56,
1773
+ "eval_loss": 1.1470853090286255,
1774
+ "eval_runtime": 119.0749,
1775
+ "eval_samples_per_second": 8.39,
1776
+ "eval_steps_per_second": 0.529,
1777
+ "step": 240
1778
+ },
1779
+ {
1780
+ "epoch": 2.57,
1781
+ "grad_norm": 0.3146586486940167,
1782
+ "learning_rate": 5.7672820959417254e-05,
1783
+ "loss": 0.785,
1784
+ "step": 241
1785
+ },
1786
+ {
1787
+ "epoch": 2.58,
1788
+ "grad_norm": 0.3309473634570162,
1789
+ "learning_rate": 5.68903135390912e-05,
1790
+ "loss": 0.7007,
1791
+ "step": 242
1792
+ },
1793
+ {
1794
+ "epoch": 2.59,
1795
+ "grad_norm": 0.2927704203363025,
1796
+ "learning_rate": 5.611103504890444e-05,
1797
+ "loss": 0.778,
1798
+ "step": 243
1799
+ },
1800
+ {
1801
+ "epoch": 2.6,
1802
+ "grad_norm": 0.31346541530480915,
1803
+ "learning_rate": 5.533504385708024e-05,
1804
+ "loss": 0.7272,
1805
+ "step": 244
1806
+ },
1807
+ {
1808
+ "epoch": 2.62,
1809
+ "grad_norm": 0.2996345434845278,
1810
+ "learning_rate": 5.456239808562209e-05,
1811
+ "loss": 0.8091,
1812
+ "step": 245
1813
+ },
1814
+ {
1815
+ "epoch": 2.63,
1816
+ "grad_norm": 0.29407937930772826,
1817
+ "learning_rate": 5.379315560596038e-05,
1818
+ "loss": 0.7666,
1819
+ "step": 246
1820
+ },
1821
+ {
1822
+ "epoch": 2.64,
1823
+ "grad_norm": 0.30530254935425627,
1824
+ "learning_rate": 5.3027374034617785e-05,
1825
+ "loss": 0.7982,
1826
+ "step": 247
1827
+ },
1828
+ {
1829
+ "epoch": 2.65,
1830
+ "grad_norm": 0.3298149075133802,
1831
+ "learning_rate": 5.226511072889371e-05,
1832
+ "loss": 0.7962,
1833
+ "step": 248
1834
+ },
1835
+ {
1836
+ "epoch": 2.66,
1837
+ "grad_norm": 0.33155001378615223,
1838
+ "learning_rate": 5.1506422782568345e-05,
1839
+ "loss": 0.8087,
1840
+ "step": 249
1841
+ },
1842
+ {
1843
+ "epoch": 2.67,
1844
+ "grad_norm": 0.32891369446509405,
1845
+ "learning_rate": 5.0751367021626215e-05,
1846
+ "loss": 0.7702,
1847
+ "step": 250
1848
+ },
1849
+ {
1850
+ "epoch": 2.68,
1851
+ "grad_norm": 0.3042328939887202,
1852
+ "learning_rate": 5.000000000000002e-05,
1853
+ "loss": 0.7924,
1854
+ "step": 251
1855
+ },
1856
+ {
1857
+ "epoch": 2.69,
1858
+ "grad_norm": 0.3037799376581133,
1859
+ "learning_rate": 4.9252377995334444e-05,
1860
+ "loss": 0.7852,
1861
+ "step": 252
1862
+ },
1863
+ {
1864
+ "epoch": 2.7,
1865
+ "grad_norm": 0.3435430445603929,
1866
+ "learning_rate": 4.85085570047713e-05,
1867
+ "loss": 0.7501,
1868
+ "step": 253
1869
+ },
1870
+ {
1871
+ "epoch": 2.71,
1872
+ "grad_norm": 0.3072160193979946,
1873
+ "learning_rate": 4.776859274075506e-05,
1874
+ "loss": 0.7462,
1875
+ "step": 254
1876
+ },
1877
+ {
1878
+ "epoch": 2.72,
1879
+ "grad_norm": 0.3223586439500028,
1880
+ "learning_rate": 4.703254062686017e-05,
1881
+ "loss": 0.775,
1882
+ "step": 255
1883
+ },
1884
+ {
1885
+ "epoch": 2.73,
1886
+ "grad_norm": 0.3270406403084203,
1887
+ "learning_rate": 4.630045579363957e-05,
1888
+ "loss": 0.8306,
1889
+ "step": 256
1890
+ },
1891
+ {
1892
+ "epoch": 2.74,
1893
+ "grad_norm": 0.3360192842512657,
1894
+ "learning_rate": 4.557239307449561e-05,
1895
+ "loss": 0.7697,
1896
+ "step": 257
1897
+ },
1898
+ {
1899
+ "epoch": 2.75,
1900
+ "grad_norm": 0.34282816479900324,
1901
+ "learning_rate": 4.484840700157295e-05,
1902
+ "loss": 0.7654,
1903
+ "step": 258
1904
+ },
1905
+ {
1906
+ "epoch": 2.77,
1907
+ "grad_norm": 0.30039142762313786,
1908
+ "learning_rate": 4.412855180167406e-05,
1909
+ "loss": 0.7703,
1910
+ "step": 259
1911
+ },
1912
+ {
1913
+ "epoch": 2.78,
1914
+ "grad_norm": 0.34307884673711425,
1915
+ "learning_rate": 4.3412881392197526e-05,
1916
+ "loss": 0.7993,
1917
+ "step": 260
1918
+ },
1919
+ {
1920
+ "epoch": 2.79,
1921
+ "grad_norm": 0.33685538845268104,
1922
+ "learning_rate": 4.270144937709981e-05,
1923
+ "loss": 0.7866,
1924
+ "step": 261
1925
+ },
1926
+ {
1927
+ "epoch": 2.8,
1928
+ "grad_norm": 0.33166767859224683,
1929
+ "learning_rate": 4.19943090428802e-05,
1930
+ "loss": 0.8083,
1931
+ "step": 262
1932
+ },
1933
+ {
1934
+ "epoch": 2.81,
1935
+ "grad_norm": 0.3086370003245581,
1936
+ "learning_rate": 4.129151335458957e-05,
1937
+ "loss": 0.7938,
1938
+ "step": 263
1939
+ },
1940
+ {
1941
+ "epoch": 2.82,
1942
+ "grad_norm": 0.3715649674817313,
1943
+ "learning_rate": 4.059311495186338e-05,
1944
+ "loss": 0.7577,
1945
+ "step": 264
1946
+ },
1947
+ {
1948
+ "epoch": 2.82,
1949
+ "eval_loss": 1.1478512287139893,
1950
+ "eval_runtime": 119.1178,
1951
+ "eval_samples_per_second": 8.387,
1952
+ "eval_steps_per_second": 0.529,
1953
+ "step": 264
1954
+ },
1955
+ {
1956
+ "epoch": 2.83,
1957
+ "grad_norm": 0.3298033298390841,
1958
+ "learning_rate": 3.9899166144978904e-05,
1959
+ "loss": 0.8296,
1960
+ "step": 265
1961
+ },
1962
+ {
1963
+ "epoch": 2.84,
1964
+ "grad_norm": 0.3294808666769515,
1965
+ "learning_rate": 3.920971891093718e-05,
1966
+ "loss": 0.8206,
1967
+ "step": 266
1968
+ },
1969
+ {
1970
+ "epoch": 2.85,
1971
+ "grad_norm": 0.3239672501165848,
1972
+ "learning_rate": 3.852482488956992e-05,
1973
+ "loss": 0.8116,
1974
+ "step": 267
1975
+ },
1976
+ {
1977
+ "epoch": 2.86,
1978
+ "grad_norm": 0.3286742994048133,
1979
+ "learning_rate": 3.784453537967161e-05,
1980
+ "loss": 0.8096,
1981
+ "step": 268
1982
+ },
1983
+ {
1984
+ "epoch": 2.87,
1985
+ "grad_norm": 0.31259050250842946,
1986
+ "learning_rate": 3.7168901335157315e-05,
1987
+ "loss": 0.7669,
1988
+ "step": 269
1989
+ },
1990
+ {
1991
+ "epoch": 2.88,
1992
+ "grad_norm": 0.3308991711135206,
1993
+ "learning_rate": 3.649797336124615e-05,
1994
+ "loss": 0.8041,
1995
+ "step": 270
1996
+ },
1997
+ {
1998
+ "epoch": 2.89,
1999
+ "grad_norm": 0.32757727002633424,
2000
+ "learning_rate": 3.583180171067101e-05,
2001
+ "loss": 0.7673,
2002
+ "step": 271
2003
+ },
2004
+ {
2005
+ "epoch": 2.9,
2006
+ "grad_norm": 0.3342551756453125,
2007
+ "learning_rate": 3.517043627991441e-05,
2008
+ "loss": 0.8005,
2009
+ "step": 272
2010
+ },
2011
+ {
2012
+ "epoch": 2.91,
2013
+ "grad_norm": 0.31643754309861705,
2014
+ "learning_rate": 3.45139266054715e-05,
2015
+ "loss": 0.787,
2016
+ "step": 273
2017
+ },
2018
+ {
2019
+ "epoch": 2.93,
2020
+ "grad_norm": 0.3140452683879005,
2021
+ "learning_rate": 3.3862321860139576e-05,
2022
+ "loss": 0.7888,
2023
+ "step": 274
2024
+ },
2025
+ {
2026
+ "epoch": 2.94,
2027
+ "grad_norm": 0.30706221155036223,
2028
+ "learning_rate": 3.3215670849335155e-05,
2029
+ "loss": 0.827,
2030
+ "step": 275
2031
+ },
2032
+ {
2033
+ "epoch": 2.95,
2034
+ "grad_norm": 0.3185483102727301,
2035
+ "learning_rate": 3.257402200743821e-05,
2036
+ "loss": 0.7779,
2037
+ "step": 276
2038
+ },
2039
+ {
2040
+ "epoch": 2.96,
2041
+ "grad_norm": 0.3032818796307545,
2042
+ "learning_rate": 3.19374233941647e-05,
2043
+ "loss": 0.7993,
2044
+ "step": 277
2045
+ },
2046
+ {
2047
+ "epoch": 2.97,
2048
+ "grad_norm": 0.3057758504695884,
2049
+ "learning_rate": 3.130592269096671e-05,
2050
+ "loss": 0.768,
2051
+ "step": 278
2052
+ },
2053
+ {
2054
+ "epoch": 2.98,
2055
+ "grad_norm": 0.3245404038219604,
2056
+ "learning_rate": 3.0679567197461134e-05,
2057
+ "loss": 0.7706,
2058
+ "step": 279
2059
+ }
2060
+ ],
2061
+ "logging_steps": 1,
2062
+ "max_steps": 372,
2063
+ "num_input_tokens_seen": 0,
2064
+ "num_train_epochs": 4,
2065
+ "save_steps": 93,
2066
+ "total_flos": 5.168039211319689e+18,
2067
+ "train_batch_size": 4,
2068
+ "trial_name": null,
2069
+ "trial_params": null
2070
+ }
checkpoint-279/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c56515a18cd914d4eee44c09952d3a756ea623b0b6e69e8dfaeb0dbc7b665f46
3
+ size 6776
checkpoint-279/zero_to_fp32.py ADDED
@@ -0,0 +1,592 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _has_callable(obj, fn):
252
+ attr = getattr(obj, fn, None)
253
+ return callable(attr)
254
+
255
+
256
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
257
+ param_shapes = zero_model_states[0].param_shapes
258
+
259
+ # Reconstruction protocol:
260
+ #
261
+ # XXX: document this
262
+
263
+ if debug:
264
+ for i in range(world_size):
265
+ for j in range(len(fp32_flat_groups[0])):
266
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
267
+
268
+ # XXX: memory usage doubles here (zero2)
269
+ num_param_groups = len(fp32_flat_groups[0])
270
+ merged_single_partition_of_fp32_groups = []
271
+ for i in range(num_param_groups):
272
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
273
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
274
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
275
+ avail_numel = sum(
276
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
277
+
278
+ if debug:
279
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
280
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
281
+ # not asserting if there is a mismatch due to possible padding
282
+ print(f"Have {avail_numel} numels to process.")
283
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
284
+
285
+ # params
286
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
287
+ # out-of-core computing solution
288
+ total_numel = 0
289
+ total_params = 0
290
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
291
+ offset = 0
292
+ avail_numel = full_single_fp32_vector.numel()
293
+ for name, shape in shapes.items():
294
+
295
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
296
+ total_numel += unpartitioned_numel
297
+ total_params += 1
298
+
299
+ if debug:
300
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
301
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
302
+ offset += unpartitioned_numel
303
+
304
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
305
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
306
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
307
+ # live optimizer object, so we are checking that the numbers are within the right range
308
+ align_to = 2 * world_size
309
+
310
+ def zero2_align(x):
311
+ return align_to * math.ceil(x / align_to)
312
+
313
+ if debug:
314
+ print(f"original offset={offset}, avail_numel={avail_numel}")
315
+
316
+ offset = zero2_align(offset)
317
+ avail_numel = zero2_align(avail_numel)
318
+
319
+ if debug:
320
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
321
+
322
+ # Sanity check
323
+ if offset != avail_numel:
324
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
325
+
326
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
327
+
328
+
329
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
330
+ state_dict = OrderedDict()
331
+
332
+ # buffers
333
+ buffers = zero_model_states[0].buffers
334
+ state_dict.update(buffers)
335
+ if debug:
336
+ print(f"added {len(buffers)} buffers")
337
+
338
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
339
+
340
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
341
+
342
+ # recover shared parameters
343
+ for pair in zero_model_states[0].shared_params:
344
+ if pair[1] in state_dict:
345
+ state_dict[pair[0]] = state_dict[pair[1]]
346
+
347
+ return state_dict
348
+
349
+
350
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
351
+ remainder = unpartitioned_numel % world_size
352
+ padding_numel = (world_size - remainder) if remainder else 0
353
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
354
+ return partitioned_numel, padding_numel
355
+
356
+
357
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
358
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
359
+ return
360
+
361
+ if debug:
362
+ for i in range(world_size):
363
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
364
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
365
+
366
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
367
+ wanted_params = len(frozen_param_shapes)
368
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
369
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
370
+ print(f'Frozen params: Have {avail_numel} numels to process.')
371
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
372
+
373
+ total_params = 0
374
+ total_numel = 0
375
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
376
+ total_params += 1
377
+ unpartitioned_numel = shape.numel()
378
+ total_numel += unpartitioned_numel
379
+
380
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
381
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
382
+
383
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
384
+
385
+ if debug:
386
+ print(
387
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
388
+ )
389
+
390
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
391
+
392
+
393
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
394
+ param_shapes = zero_model_states[0].param_shapes
395
+ avail_numel = fp32_flat_groups[0].numel() * world_size
396
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
397
+ # param, re-consolidating each param, while dealing with padding if any
398
+
399
+ # merge list of dicts, preserving order
400
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
401
+
402
+ if debug:
403
+ for i in range(world_size):
404
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
405
+
406
+ wanted_params = len(param_shapes)
407
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
408
+ # not asserting if there is a mismatch due to possible padding
409
+ avail_numel = fp32_flat_groups[0].numel() * world_size
410
+ print(f"Trainable params: Have {avail_numel} numels to process.")
411
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
412
+
413
+ # params
414
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
415
+ # out-of-core computing solution
416
+ offset = 0
417
+ total_numel = 0
418
+ total_params = 0
419
+ for name, shape in param_shapes.items():
420
+
421
+ unpartitioned_numel = shape.numel()
422
+ total_numel += unpartitioned_numel
423
+ total_params += 1
424
+
425
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
426
+
427
+ if debug:
428
+ print(
429
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
430
+ )
431
+
432
+ # XXX: memory usage doubles here
433
+ state_dict[name] = torch.cat(
434
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
435
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
436
+ offset += partitioned_numel
437
+
438
+ offset *= world_size
439
+
440
+ # Sanity check
441
+ if offset != avail_numel:
442
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
443
+
444
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
445
+
446
+
447
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
448
+ state_dict = OrderedDict()
449
+
450
+ # buffers
451
+ buffers = zero_model_states[0].buffers
452
+ state_dict.update(buffers)
453
+ if debug:
454
+ print(f"added {len(buffers)} buffers")
455
+
456
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
457
+
458
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
459
+
460
+ # recover shared parameters
461
+ for pair in zero_model_states[0].shared_params:
462
+ if pair[1] in state_dict:
463
+ state_dict[pair[0]] = state_dict[pair[1]]
464
+
465
+ return state_dict
466
+
467
+
468
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
469
+ """
470
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
471
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
472
+ via a model hub.
473
+
474
+ Args:
475
+ - ``checkpoint_dir``: path to the desired checkpoint folder
476
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
477
+
478
+ Returns:
479
+ - pytorch ``state_dict``
480
+
481
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
482
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
483
+ the checkpoint.
484
+
485
+ A typical usage might be ::
486
+
487
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
488
+ # do the training and checkpoint saving
489
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
490
+ model = model.cpu() # move to cpu
491
+ model.load_state_dict(state_dict)
492
+ # submit to model hub or save the model to share with others
493
+
494
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
495
+ application. i.e. you will need to re-initialize the deepspeed engine, since
496
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
497
+
498
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
499
+
500
+ """
501
+ if tag is None:
502
+ latest_path = os.path.join(checkpoint_dir, 'latest')
503
+ if os.path.isfile(latest_path):
504
+ with open(latest_path, 'r') as fd:
505
+ tag = fd.read().strip()
506
+ else:
507
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
508
+
509
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
510
+
511
+ if not os.path.isdir(ds_checkpoint_dir):
512
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
513
+
514
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
515
+
516
+
517
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
518
+ """
519
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
520
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
521
+
522
+ Args:
523
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
524
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
525
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
526
+ """
527
+
528
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
529
+ print(f"Saving fp32 state dict to {output_file}")
530
+ torch.save(state_dict, output_file)
531
+
532
+
533
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
534
+ """
535
+ 1. Put the provided model to cpu
536
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
537
+ 3. Load it into the provided model
538
+
539
+ Args:
540
+ - ``model``: the model object to update
541
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
542
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
543
+
544
+ Returns:
545
+ - ``model`: modified model
546
+
547
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
548
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
549
+ conveniently placed for you in the checkpoint folder.
550
+
551
+ A typical usage might be ::
552
+
553
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
554
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
555
+ # submit to model hub or save the model to share with others
556
+
557
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
558
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
559
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
560
+
561
+ """
562
+ logger.info(f"Extracting fp32 weights")
563
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
564
+
565
+ logger.info(f"Overwriting model with fp32 weights")
566
+ model = model.cpu()
567
+ model.load_state_dict(state_dict, strict=False)
568
+
569
+ return model
570
+
571
+
572
+ if __name__ == "__main__":
573
+
574
+ parser = argparse.ArgumentParser()
575
+ parser.add_argument("checkpoint_dir",
576
+ type=str,
577
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
578
+ parser.add_argument(
579
+ "output_file",
580
+ type=str,
581
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
582
+ parser.add_argument("-t",
583
+ "--tag",
584
+ type=str,
585
+ default=None,
586
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
587
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
588
+ args = parser.parse_args()
589
+
590
+ debug = args.debug
591
+
592
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
checkpoint-336/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: google/gemma-2b
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.9.0
checkpoint-336/adapter_config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "google/gemma-2b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 32,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "up_proj",
23
+ "q_proj",
24
+ "v_proj",
25
+ "down_proj",
26
+ "gate_proj",
27
+ "k_proj",
28
+ "o_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "use_dora": false,
32
+ "use_rslora": false
33
+ }
checkpoint-336/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ce5c9479f7b4e2f4f1c71ed29d0ec95f79e1731de4be9d3f7759abe3043fcdc
3
+ size 78480320
checkpoint-336/global_step336/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f204930ec4f2a105b656f8596b32abc5228db4def6b1aa8c6f63fe8c492820e
3
+ size 58886928
checkpoint-336/global_step336/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd427c55f17c0510ec2ed53fe5e319eb0a2c4761d4083df28d11ba7aa84e5a15
3
+ size 58885968
checkpoint-336/global_step336/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6271e5b9edc1d160ad0326ac1a89d8d44ef09363904f40271525aff81aa3b01d
3
+ size 58886992
checkpoint-336/global_step336/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5abf7c61e69335a8e881c7220e7017eb5372fdf817a3b0d26486e4faab795701
3
+ size 58886032
checkpoint-336/global_step336/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8dbda4b13cb1e71570782ac3ce184727dbacb34070d7b08deeb937890375555c
3
+ size 1159049922
checkpoint-336/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step336
checkpoint-336/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28b9cac536dcc2f0fcb0db1a7ed44d898a5e257f0e6a2dde4782893acb56ce7d
3
+ size 15024
checkpoint-336/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3ee31ce56c4f2248ab7aaf5beaf8d895447d28644df750b83cc2177262498de
3
+ size 15024
checkpoint-336/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a615e7b3e06287a0e82a15b753b1c48c658347992fbb7d59ee5836d824655ebd
3
+ size 15024
checkpoint-336/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe5c5388f4cf688aa51717160bed97071e825a07ba7d9a22897241c258de91d9
3
+ size 15024
checkpoint-336/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:033700c231840b794630147afe6dca04265ec61bb681c241b2e3012bcb9cc8a3
3
+ size 1064
checkpoint-336/trainer_state.json ADDED
@@ -0,0 +1,2477 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.203959345817566,
3
+ "best_model_checkpoint": "./out/checkpoint-112",
4
+ "epoch": 2.991097922848665,
5
+ "eval_steps": 28,
6
+ "global_step": 336,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "grad_norm": 4.313233023002325,
14
+ "learning_rate": 1.8181818181818182e-05,
15
+ "loss": 1.9528,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.01,
20
+ "eval_loss": 2.1875686645507812,
21
+ "eval_runtime": 12.8608,
22
+ "eval_samples_per_second": 23.327,
23
+ "eval_steps_per_second": 2.955,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.02,
28
+ "grad_norm": 4.039172290955229,
29
+ "learning_rate": 3.6363636363636364e-05,
30
+ "loss": 1.8358,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.03,
35
+ "grad_norm": 4.504705512003857,
36
+ "learning_rate": 5.4545454545454546e-05,
37
+ "loss": 2.0207,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.04,
42
+ "grad_norm": 4.591862504847867,
43
+ "learning_rate": 7.272727272727273e-05,
44
+ "loss": 1.979,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.04,
49
+ "grad_norm": 3.812893581399005,
50
+ "learning_rate": 9.090909090909092e-05,
51
+ "loss": 1.8356,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.05,
56
+ "grad_norm": 0.42886752872747064,
57
+ "learning_rate": 0.00010909090909090909,
58
+ "loss": 1.6722,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.06,
63
+ "grad_norm": 0.22497294481851865,
64
+ "learning_rate": 0.00012727272727272728,
65
+ "loss": 1.6711,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.07,
70
+ "grad_norm": 0.20955259847301927,
71
+ "learning_rate": 0.00014545454545454546,
72
+ "loss": 1.8546,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.08,
77
+ "grad_norm": 0.2200095325539683,
78
+ "learning_rate": 0.00016363636363636366,
79
+ "loss": 1.7538,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.09,
84
+ "grad_norm": 0.19187339879899318,
85
+ "learning_rate": 0.00018181818181818183,
86
+ "loss": 1.6137,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.1,
91
+ "grad_norm": 0.2113395673717837,
92
+ "learning_rate": 0.0002,
93
+ "loss": 1.5225,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.11,
98
+ "grad_norm": 0.17673768408382828,
99
+ "learning_rate": 0.00019999741592564903,
100
+ "loss": 1.5303,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.12,
105
+ "grad_norm": 0.24120852820548402,
106
+ "learning_rate": 0.00019998966383614488,
107
+ "loss": 1.5089,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.12,
112
+ "grad_norm": 0.3089489160535682,
113
+ "learning_rate": 0.00019997674413212708,
114
+ "loss": 1.4525,
115
+ "step": 14
116
+ },
117
+ {
118
+ "epoch": 0.13,
119
+ "grad_norm": 0.2656143410731927,
120
+ "learning_rate": 0.00019995865748130516,
121
+ "loss": 1.4648,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 0.14,
126
+ "grad_norm": 3.769410316227205,
127
+ "learning_rate": 0.0001999354048184241,
128
+ "loss": 1.3439,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.15,
133
+ "grad_norm": 0.32102180658823753,
134
+ "learning_rate": 0.00019990698734521613,
135
+ "loss": 1.4644,
136
+ "step": 17
137
+ },
138
+ {
139
+ "epoch": 0.16,
140
+ "grad_norm": 0.22094428128919438,
141
+ "learning_rate": 0.0001998734065303385,
142
+ "loss": 1.1927,
143
+ "step": 18
144
+ },
145
+ {
146
+ "epoch": 0.17,
147
+ "grad_norm": 0.22344487218098863,
148
+ "learning_rate": 0.00019983466410929764,
149
+ "loss": 1.2916,
150
+ "step": 19
151
+ },
152
+ {
153
+ "epoch": 0.18,
154
+ "grad_norm": 0.25036262498479456,
155
+ "learning_rate": 0.0001997907620843595,
156
+ "loss": 1.2982,
157
+ "step": 20
158
+ },
159
+ {
160
+ "epoch": 0.19,
161
+ "grad_norm": 0.22671119151539426,
162
+ "learning_rate": 0.00019974170272444604,
163
+ "loss": 1.2146,
164
+ "step": 21
165
+ },
166
+ {
167
+ "epoch": 0.2,
168
+ "grad_norm": 0.259249080403425,
169
+ "learning_rate": 0.00019968748856501788,
170
+ "loss": 1.2072,
171
+ "step": 22
172
+ },
173
+ {
174
+ "epoch": 0.2,
175
+ "grad_norm": 0.23538477651406017,
176
+ "learning_rate": 0.00019962812240794343,
177
+ "loss": 1.3281,
178
+ "step": 23
179
+ },
180
+ {
181
+ "epoch": 0.21,
182
+ "grad_norm": 0.2659115087625978,
183
+ "learning_rate": 0.000199563607321354,
184
+ "loss": 1.1396,
185
+ "step": 24
186
+ },
187
+ {
188
+ "epoch": 0.22,
189
+ "grad_norm": 0.23617264858854836,
190
+ "learning_rate": 0.0001994939466394851,
191
+ "loss": 1.1389,
192
+ "step": 25
193
+ },
194
+ {
195
+ "epoch": 0.23,
196
+ "grad_norm": 0.20514227454180176,
197
+ "learning_rate": 0.00019941914396250446,
198
+ "loss": 1.249,
199
+ "step": 26
200
+ },
201
+ {
202
+ "epoch": 0.24,
203
+ "grad_norm": 0.19660894225830144,
204
+ "learning_rate": 0.00019933920315632557,
205
+ "loss": 1.1776,
206
+ "step": 27
207
+ },
208
+ {
209
+ "epoch": 0.25,
210
+ "grad_norm": 0.2067663909729571,
211
+ "learning_rate": 0.00019925412835240826,
212
+ "loss": 1.1327,
213
+ "step": 28
214
+ },
215
+ {
216
+ "epoch": 0.25,
217
+ "eval_loss": 1.2991960048675537,
218
+ "eval_runtime": 13.153,
219
+ "eval_samples_per_second": 22.808,
220
+ "eval_steps_per_second": 2.889,
221
+ "step": 28
222
+ },
223
+ {
224
+ "epoch": 0.26,
225
+ "grad_norm": 0.1816588361901526,
226
+ "learning_rate": 0.0001991639239475448,
227
+ "loss": 1.1247,
228
+ "step": 29
229
+ },
230
+ {
231
+ "epoch": 0.27,
232
+ "grad_norm": 0.19626955153633807,
233
+ "learning_rate": 0.00019906859460363307,
234
+ "loss": 1.1212,
235
+ "step": 30
236
+ },
237
+ {
238
+ "epoch": 0.28,
239
+ "grad_norm": 0.21084275590405852,
240
+ "learning_rate": 0.00019896814524743528,
241
+ "loss": 0.9927,
242
+ "step": 31
243
+ },
244
+ {
245
+ "epoch": 0.28,
246
+ "grad_norm": 0.16560054949456768,
247
+ "learning_rate": 0.0001988625810703235,
248
+ "loss": 1.1249,
249
+ "step": 32
250
+ },
251
+ {
252
+ "epoch": 0.29,
253
+ "grad_norm": 0.14950879528294536,
254
+ "learning_rate": 0.0001987519075280114,
255
+ "loss": 1.1401,
256
+ "step": 33
257
+ },
258
+ {
259
+ "epoch": 0.3,
260
+ "grad_norm": 0.1777966882651237,
261
+ "learning_rate": 0.00019863613034027224,
262
+ "loss": 1.0769,
263
+ "step": 34
264
+ },
265
+ {
266
+ "epoch": 0.31,
267
+ "grad_norm": 0.1480537272052743,
268
+ "learning_rate": 0.00019851525549064323,
269
+ "loss": 1.0686,
270
+ "step": 35
271
+ },
272
+ {
273
+ "epoch": 0.32,
274
+ "grad_norm": 0.16911906750319078,
275
+ "learning_rate": 0.00019838928922611632,
276
+ "loss": 1.0253,
277
+ "step": 36
278
+ },
279
+ {
280
+ "epoch": 0.33,
281
+ "grad_norm": 0.15987682972555176,
282
+ "learning_rate": 0.00019825823805681543,
283
+ "loss": 1.0609,
284
+ "step": 37
285
+ },
286
+ {
287
+ "epoch": 0.34,
288
+ "grad_norm": 0.15757332939676763,
289
+ "learning_rate": 0.0001981221087556598,
290
+ "loss": 1.1086,
291
+ "step": 38
292
+ },
293
+ {
294
+ "epoch": 0.35,
295
+ "grad_norm": 0.13201845744757537,
296
+ "learning_rate": 0.00019798090835801418,
297
+ "loss": 1.073,
298
+ "step": 39
299
+ },
300
+ {
301
+ "epoch": 0.36,
302
+ "grad_norm": 0.12544508015984754,
303
+ "learning_rate": 0.00019783464416132506,
304
+ "loss": 1.0633,
305
+ "step": 40
306
+ },
307
+ {
308
+ "epoch": 0.36,
309
+ "grad_norm": 0.14645820383886451,
310
+ "learning_rate": 0.00019768332372474366,
311
+ "loss": 1.0653,
312
+ "step": 41
313
+ },
314
+ {
315
+ "epoch": 0.37,
316
+ "grad_norm": 0.14814101902137117,
317
+ "learning_rate": 0.00019752695486873517,
318
+ "loss": 1.0937,
319
+ "step": 42
320
+ },
321
+ {
322
+ "epoch": 0.38,
323
+ "grad_norm": 0.13888915595055443,
324
+ "learning_rate": 0.00019736554567467452,
325
+ "loss": 1.0462,
326
+ "step": 43
327
+ },
328
+ {
329
+ "epoch": 0.39,
330
+ "grad_norm": 0.13185349806639524,
331
+ "learning_rate": 0.00019719910448442893,
332
+ "loss": 1.2177,
333
+ "step": 44
334
+ },
335
+ {
336
+ "epoch": 0.4,
337
+ "grad_norm": 0.15271046712350847,
338
+ "learning_rate": 0.00019702763989992662,
339
+ "loss": 1.0237,
340
+ "step": 45
341
+ },
342
+ {
343
+ "epoch": 0.41,
344
+ "grad_norm": 0.17053588557430902,
345
+ "learning_rate": 0.00019685116078271223,
346
+ "loss": 1.0038,
347
+ "step": 46
348
+ },
349
+ {
350
+ "epoch": 0.42,
351
+ "grad_norm": 0.15641087356577812,
352
+ "learning_rate": 0.00019666967625348906,
353
+ "loss": 1.0886,
354
+ "step": 47
355
+ },
356
+ {
357
+ "epoch": 0.43,
358
+ "grad_norm": 0.1544028594191567,
359
+ "learning_rate": 0.00019648319569164736,
360
+ "loss": 1.1378,
361
+ "step": 48
362
+ },
363
+ {
364
+ "epoch": 0.44,
365
+ "grad_norm": 0.14794885994140625,
366
+ "learning_rate": 0.00019629172873477995,
367
+ "loss": 1.1495,
368
+ "step": 49
369
+ },
370
+ {
371
+ "epoch": 0.45,
372
+ "grad_norm": 0.1577684884028266,
373
+ "learning_rate": 0.0001960952852781838,
374
+ "loss": 1.0782,
375
+ "step": 50
376
+ },
377
+ {
378
+ "epoch": 0.45,
379
+ "grad_norm": 0.15961044045091288,
380
+ "learning_rate": 0.0001958938754743489,
381
+ "loss": 1.0107,
382
+ "step": 51
383
+ },
384
+ {
385
+ "epoch": 0.46,
386
+ "grad_norm": 0.14486696586022083,
387
+ "learning_rate": 0.0001956875097324334,
388
+ "loss": 1.0494,
389
+ "step": 52
390
+ },
391
+ {
392
+ "epoch": 0.47,
393
+ "grad_norm": 0.14250413725518896,
394
+ "learning_rate": 0.00019547619871772574,
395
+ "loss": 1.039,
396
+ "step": 53
397
+ },
398
+ {
399
+ "epoch": 0.48,
400
+ "grad_norm": 0.1196720279125328,
401
+ "learning_rate": 0.00019525995335109334,
402
+ "loss": 1.0966,
403
+ "step": 54
404
+ },
405
+ {
406
+ "epoch": 0.49,
407
+ "grad_norm": 0.14984795891635327,
408
+ "learning_rate": 0.0001950387848084183,
409
+ "loss": 1.0874,
410
+ "step": 55
411
+ },
412
+ {
413
+ "epoch": 0.5,
414
+ "grad_norm": 0.14891088442480416,
415
+ "learning_rate": 0.00019481270452001987,
416
+ "loss": 1.097,
417
+ "step": 56
418
+ },
419
+ {
420
+ "epoch": 0.5,
421
+ "eval_loss": 1.2264304161071777,
422
+ "eval_runtime": 13.2279,
423
+ "eval_samples_per_second": 22.679,
424
+ "eval_steps_per_second": 2.873,
425
+ "step": 56
426
+ },
427
+ {
428
+ "epoch": 0.51,
429
+ "grad_norm": 0.17814266552244534,
430
+ "learning_rate": 0.00019458172417006347,
431
+ "loss": 1.1372,
432
+ "step": 57
433
+ },
434
+ {
435
+ "epoch": 0.52,
436
+ "grad_norm": 0.16125636132578247,
437
+ "learning_rate": 0.00019434585569595708,
438
+ "loss": 1.0623,
439
+ "step": 58
440
+ },
441
+ {
442
+ "epoch": 0.53,
443
+ "grad_norm": 0.15203437202125702,
444
+ "learning_rate": 0.00019410511128773418,
445
+ "loss": 1.0399,
446
+ "step": 59
447
+ },
448
+ {
449
+ "epoch": 0.53,
450
+ "grad_norm": 0.1677461135605213,
451
+ "learning_rate": 0.0001938595033874238,
452
+ "loss": 1.0884,
453
+ "step": 60
454
+ },
455
+ {
456
+ "epoch": 0.54,
457
+ "grad_norm": 0.13564559875683407,
458
+ "learning_rate": 0.0001936090446884074,
459
+ "loss": 1.0176,
460
+ "step": 61
461
+ },
462
+ {
463
+ "epoch": 0.55,
464
+ "grad_norm": 0.1521886500642157,
465
+ "learning_rate": 0.00019335374813476302,
466
+ "loss": 1.0146,
467
+ "step": 62
468
+ },
469
+ {
470
+ "epoch": 0.56,
471
+ "grad_norm": 0.1410132122625916,
472
+ "learning_rate": 0.00019309362692059617,
473
+ "loss": 1.044,
474
+ "step": 63
475
+ },
476
+ {
477
+ "epoch": 0.57,
478
+ "grad_norm": 0.15237848179385577,
479
+ "learning_rate": 0.00019282869448935798,
480
+ "loss": 1.0354,
481
+ "step": 64
482
+ },
483
+ {
484
+ "epoch": 0.58,
485
+ "grad_norm": 0.13871660988504514,
486
+ "learning_rate": 0.00019255896453315052,
487
+ "loss": 1.0189,
488
+ "step": 65
489
+ },
490
+ {
491
+ "epoch": 0.59,
492
+ "grad_norm": 0.14863047478901453,
493
+ "learning_rate": 0.000192284450992019,
494
+ "loss": 1.0704,
495
+ "step": 66
496
+ },
497
+ {
498
+ "epoch": 0.6,
499
+ "grad_norm": 0.13794806124403974,
500
+ "learning_rate": 0.0001920051680532314,
501
+ "loss": 1.0996,
502
+ "step": 67
503
+ },
504
+ {
505
+ "epoch": 0.61,
506
+ "grad_norm": 0.13030507705779365,
507
+ "learning_rate": 0.00019172113015054532,
508
+ "loss": 1.0015,
509
+ "step": 68
510
+ },
511
+ {
512
+ "epoch": 0.61,
513
+ "grad_norm": 0.15092494718902358,
514
+ "learning_rate": 0.0001914323519634619,
515
+ "loss": 1.0822,
516
+ "step": 69
517
+ },
518
+ {
519
+ "epoch": 0.62,
520
+ "grad_norm": 0.1350212989006066,
521
+ "learning_rate": 0.00019113884841646736,
522
+ "loss": 1.0197,
523
+ "step": 70
524
+ },
525
+ {
526
+ "epoch": 0.63,
527
+ "grad_norm": 0.18991168066586347,
528
+ "learning_rate": 0.00019084063467826137,
529
+ "loss": 1.046,
530
+ "step": 71
531
+ },
532
+ {
533
+ "epoch": 0.64,
534
+ "grad_norm": 0.14884381774710187,
535
+ "learning_rate": 0.00019053772616097337,
536
+ "loss": 1.0346,
537
+ "step": 72
538
+ },
539
+ {
540
+ "epoch": 0.65,
541
+ "grad_norm": 0.15579311209945296,
542
+ "learning_rate": 0.000190230138519366,
543
+ "loss": 1.0505,
544
+ "step": 73
545
+ },
546
+ {
547
+ "epoch": 0.66,
548
+ "grad_norm": 0.16015337150592127,
549
+ "learning_rate": 0.000189917887650026,
550
+ "loss": 1.0504,
551
+ "step": 74
552
+ },
553
+ {
554
+ "epoch": 0.67,
555
+ "grad_norm": 0.1443969321518926,
556
+ "learning_rate": 0.00018960098969054255,
557
+ "loss": 1.0755,
558
+ "step": 75
559
+ },
560
+ {
561
+ "epoch": 0.68,
562
+ "grad_norm": 0.15722162227095848,
563
+ "learning_rate": 0.00018927946101867347,
564
+ "loss": 1.0541,
565
+ "step": 76
566
+ },
567
+ {
568
+ "epoch": 0.69,
569
+ "grad_norm": 0.17009697584926559,
570
+ "learning_rate": 0.0001889533182514986,
571
+ "loss": 1.0231,
572
+ "step": 77
573
+ },
574
+ {
575
+ "epoch": 0.69,
576
+ "grad_norm": 0.1256822726781221,
577
+ "learning_rate": 0.0001886225782445612,
578
+ "loss": 0.8814,
579
+ "step": 78
580
+ },
581
+ {
582
+ "epoch": 0.7,
583
+ "grad_norm": 0.14019958069756655,
584
+ "learning_rate": 0.00018828725809099655,
585
+ "loss": 1.0277,
586
+ "step": 79
587
+ },
588
+ {
589
+ "epoch": 0.71,
590
+ "grad_norm": 0.17159459150063183,
591
+ "learning_rate": 0.0001879473751206489,
592
+ "loss": 0.9495,
593
+ "step": 80
594
+ },
595
+ {
596
+ "epoch": 0.72,
597
+ "grad_norm": 0.146430011834186,
598
+ "learning_rate": 0.00018760294689917553,
599
+ "loss": 1.0598,
600
+ "step": 81
601
+ },
602
+ {
603
+ "epoch": 0.73,
604
+ "grad_norm": 0.16834256802992476,
605
+ "learning_rate": 0.00018725399122713912,
606
+ "loss": 1.0237,
607
+ "step": 82
608
+ },
609
+ {
610
+ "epoch": 0.74,
611
+ "grad_norm": 0.15663699267164208,
612
+ "learning_rate": 0.00018690052613908772,
613
+ "loss": 0.939,
614
+ "step": 83
615
+ },
616
+ {
617
+ "epoch": 0.75,
618
+ "grad_norm": 0.15655985150409854,
619
+ "learning_rate": 0.0001865425699026226,
620
+ "loss": 1.0302,
621
+ "step": 84
622
+ },
623
+ {
624
+ "epoch": 0.75,
625
+ "eval_loss": 1.2143030166625977,
626
+ "eval_runtime": 13.2387,
627
+ "eval_samples_per_second": 22.661,
628
+ "eval_steps_per_second": 2.87,
629
+ "step": 84
630
+ },
631
+ {
632
+ "epoch": 0.76,
633
+ "grad_norm": 0.15273470110260864,
634
+ "learning_rate": 0.00018618014101745442,
635
+ "loss": 1.0127,
636
+ "step": 85
637
+ },
638
+ {
639
+ "epoch": 0.77,
640
+ "grad_norm": 0.1723243680259614,
641
+ "learning_rate": 0.0001858132582144469,
642
+ "loss": 0.9306,
643
+ "step": 86
644
+ },
645
+ {
646
+ "epoch": 0.77,
647
+ "grad_norm": 0.14747098547446996,
648
+ "learning_rate": 0.00018544194045464886,
649
+ "loss": 1.0073,
650
+ "step": 87
651
+ },
652
+ {
653
+ "epoch": 0.78,
654
+ "grad_norm": 0.17208333285514918,
655
+ "learning_rate": 0.00018506620692831428,
656
+ "loss": 1.0328,
657
+ "step": 88
658
+ },
659
+ {
660
+ "epoch": 0.79,
661
+ "grad_norm": 0.14918051024971962,
662
+ "learning_rate": 0.0001846860770539105,
663
+ "loss": 1.0022,
664
+ "step": 89
665
+ },
666
+ {
667
+ "epoch": 0.8,
668
+ "grad_norm": 0.156315164090714,
669
+ "learning_rate": 0.00018430157047711474,
670
+ "loss": 1.0293,
671
+ "step": 90
672
+ },
673
+ {
674
+ "epoch": 0.81,
675
+ "grad_norm": 0.2013424548288477,
676
+ "learning_rate": 0.00018391270706979862,
677
+ "loss": 0.9395,
678
+ "step": 91
679
+ },
680
+ {
681
+ "epoch": 0.82,
682
+ "grad_norm": 0.17909726353002614,
683
+ "learning_rate": 0.00018351950692900126,
684
+ "loss": 0.9756,
685
+ "step": 92
686
+ },
687
+ {
688
+ "epoch": 0.83,
689
+ "grad_norm": 0.16939245158726288,
690
+ "learning_rate": 0.00018312199037589068,
691
+ "loss": 0.9576,
692
+ "step": 93
693
+ },
694
+ {
695
+ "epoch": 0.84,
696
+ "grad_norm": 0.14685720680893694,
697
+ "learning_rate": 0.00018272017795471345,
698
+ "loss": 1.0045,
699
+ "step": 94
700
+ },
701
+ {
702
+ "epoch": 0.85,
703
+ "grad_norm": 0.17464839085505987,
704
+ "learning_rate": 0.000182314090431733,
705
+ "loss": 0.9862,
706
+ "step": 95
707
+ },
708
+ {
709
+ "epoch": 0.85,
710
+ "grad_norm": 0.16060904136932572,
711
+ "learning_rate": 0.00018190374879415632,
712
+ "loss": 1.0022,
713
+ "step": 96
714
+ },
715
+ {
716
+ "epoch": 0.86,
717
+ "grad_norm": 0.18715193350083867,
718
+ "learning_rate": 0.00018148917424904953,
719
+ "loss": 1.042,
720
+ "step": 97
721
+ },
722
+ {
723
+ "epoch": 0.87,
724
+ "grad_norm": 0.1675573400576595,
725
+ "learning_rate": 0.0001810703882222415,
726
+ "loss": 1.0047,
727
+ "step": 98
728
+ },
729
+ {
730
+ "epoch": 0.88,
731
+ "grad_norm": 0.1871466286989249,
732
+ "learning_rate": 0.00018064741235721687,
733
+ "loss": 0.9834,
734
+ "step": 99
735
+ },
736
+ {
737
+ "epoch": 0.89,
738
+ "grad_norm": 0.17453934867565302,
739
+ "learning_rate": 0.00018022026851399737,
740
+ "loss": 0.9649,
741
+ "step": 100
742
+ },
743
+ {
744
+ "epoch": 0.9,
745
+ "grad_norm": 0.15960631507184767,
746
+ "learning_rate": 0.0001797889787680119,
747
+ "loss": 0.9673,
748
+ "step": 101
749
+ },
750
+ {
751
+ "epoch": 0.91,
752
+ "grad_norm": 0.17844936635366368,
753
+ "learning_rate": 0.00017935356540895597,
754
+ "loss": 1.0951,
755
+ "step": 102
756
+ },
757
+ {
758
+ "epoch": 0.92,
759
+ "grad_norm": 0.16733018789000254,
760
+ "learning_rate": 0.00017891405093963938,
761
+ "loss": 0.9954,
762
+ "step": 103
763
+ },
764
+ {
765
+ "epoch": 0.93,
766
+ "grad_norm": 0.17305556075296993,
767
+ "learning_rate": 0.00017847045807482345,
768
+ "loss": 0.892,
769
+ "step": 104
770
+ },
771
+ {
772
+ "epoch": 0.93,
773
+ "grad_norm": 0.17197614099805034,
774
+ "learning_rate": 0.00017802280974004716,
775
+ "loss": 1.0494,
776
+ "step": 105
777
+ },
778
+ {
779
+ "epoch": 0.94,
780
+ "grad_norm": 0.18063836817127235,
781
+ "learning_rate": 0.000177571129070442,
782
+ "loss": 1.0264,
783
+ "step": 106
784
+ },
785
+ {
786
+ "epoch": 0.95,
787
+ "grad_norm": 0.14597707005699143,
788
+ "learning_rate": 0.00017711543940953668,
789
+ "loss": 0.9532,
790
+ "step": 107
791
+ },
792
+ {
793
+ "epoch": 0.96,
794
+ "grad_norm": 0.1422048149465345,
795
+ "learning_rate": 0.00017665576430805053,
796
+ "loss": 0.97,
797
+ "step": 108
798
+ },
799
+ {
800
+ "epoch": 0.97,
801
+ "grad_norm": 0.18313914688655572,
802
+ "learning_rate": 0.0001761921275226763,
803
+ "loss": 0.9282,
804
+ "step": 109
805
+ },
806
+ {
807
+ "epoch": 0.98,
808
+ "grad_norm": 0.200679751171441,
809
+ "learning_rate": 0.00017572455301485249,
810
+ "loss": 1.0,
811
+ "step": 110
812
+ },
813
+ {
814
+ "epoch": 0.99,
815
+ "grad_norm": 0.17700985594898055,
816
+ "learning_rate": 0.00017525306494952498,
817
+ "loss": 1.0165,
818
+ "step": 111
819
+ },
820
+ {
821
+ "epoch": 1.0,
822
+ "grad_norm": 0.19925777202726191,
823
+ "learning_rate": 0.0001747776876938981,
824
+ "loss": 1.0346,
825
+ "step": 112
826
+ },
827
+ {
828
+ "epoch": 1.0,
829
+ "eval_loss": 1.203959345817566,
830
+ "eval_runtime": 13.2547,
831
+ "eval_samples_per_second": 22.634,
832
+ "eval_steps_per_second": 2.867,
833
+ "step": 112
834
+ },
835
+ {
836
+ "epoch": 1.01,
837
+ "grad_norm": 0.1606469603473709,
838
+ "learning_rate": 0.00017429844581617532,
839
+ "loss": 0.9832,
840
+ "step": 113
841
+ },
842
+ {
843
+ "epoch": 1.01,
844
+ "grad_norm": 0.16403912763780054,
845
+ "learning_rate": 0.00017381536408428948,
846
+ "loss": 0.9346,
847
+ "step": 114
848
+ },
849
+ {
850
+ "epoch": 1.02,
851
+ "grad_norm": 0.1936046893744468,
852
+ "learning_rate": 0.00017332846746462288,
853
+ "loss": 0.9382,
854
+ "step": 115
855
+ },
856
+ {
857
+ "epoch": 1.03,
858
+ "grad_norm": 0.14250769247239573,
859
+ "learning_rate": 0.0001728377811207168,
860
+ "loss": 0.8914,
861
+ "step": 116
862
+ },
863
+ {
864
+ "epoch": 1.04,
865
+ "grad_norm": 0.17889563599797687,
866
+ "learning_rate": 0.00017234333041197126,
867
+ "loss": 0.9736,
868
+ "step": 117
869
+ },
870
+ {
871
+ "epoch": 1.05,
872
+ "grad_norm": 0.20288960866045594,
873
+ "learning_rate": 0.00017184514089233405,
874
+ "loss": 0.8477,
875
+ "step": 118
876
+ },
877
+ {
878
+ "epoch": 1.06,
879
+ "grad_norm": 0.20926349930533472,
880
+ "learning_rate": 0.00017134323830898037,
881
+ "loss": 0.9933,
882
+ "step": 119
883
+ },
884
+ {
885
+ "epoch": 1.07,
886
+ "grad_norm": 0.21316934416499642,
887
+ "learning_rate": 0.00017083764860098205,
888
+ "loss": 0.9168,
889
+ "step": 120
890
+ },
891
+ {
892
+ "epoch": 1.08,
893
+ "grad_norm": 0.21654320387312692,
894
+ "learning_rate": 0.0001703283978979671,
895
+ "loss": 0.9584,
896
+ "step": 121
897
+ },
898
+ {
899
+ "epoch": 1.09,
900
+ "grad_norm": 0.23789742308175463,
901
+ "learning_rate": 0.00016981551251876904,
902
+ "loss": 1.0298,
903
+ "step": 122
904
+ },
905
+ {
906
+ "epoch": 1.09,
907
+ "grad_norm": 0.16433271793469648,
908
+ "learning_rate": 0.00016929901897006698,
909
+ "loss": 0.8833,
910
+ "step": 123
911
+ },
912
+ {
913
+ "epoch": 1.1,
914
+ "grad_norm": 0.16908727866207868,
915
+ "learning_rate": 0.0001687789439450156,
916
+ "loss": 1.0675,
917
+ "step": 124
918
+ },
919
+ {
920
+ "epoch": 1.11,
921
+ "grad_norm": 0.1670067931363302,
922
+ "learning_rate": 0.00016825531432186543,
923
+ "loss": 0.9515,
924
+ "step": 125
925
+ },
926
+ {
927
+ "epoch": 1.12,
928
+ "grad_norm": 0.17777465531550865,
929
+ "learning_rate": 0.00016772815716257412,
930
+ "loss": 0.8929,
931
+ "step": 126
932
+ },
933
+ {
934
+ "epoch": 1.13,
935
+ "grad_norm": 0.18442783204919333,
936
+ "learning_rate": 0.00016719749971140754,
937
+ "loss": 0.8388,
938
+ "step": 127
939
+ },
940
+ {
941
+ "epoch": 1.14,
942
+ "grad_norm": 0.19073362304284272,
943
+ "learning_rate": 0.0001666633693935319,
944
+ "loss": 0.9584,
945
+ "step": 128
946
+ },
947
+ {
948
+ "epoch": 1.15,
949
+ "grad_norm": 0.20189563405135308,
950
+ "learning_rate": 0.00016612579381359622,
951
+ "loss": 1.0264,
952
+ "step": 129
953
+ },
954
+ {
955
+ "epoch": 1.16,
956
+ "grad_norm": 0.1694138210313381,
957
+ "learning_rate": 0.00016558480075430594,
958
+ "loss": 0.9592,
959
+ "step": 130
960
+ },
961
+ {
962
+ "epoch": 1.17,
963
+ "grad_norm": 0.19195382946787184,
964
+ "learning_rate": 0.00016504041817498678,
965
+ "loss": 0.974,
966
+ "step": 131
967
+ },
968
+ {
969
+ "epoch": 1.18,
970
+ "grad_norm": 0.20684215619155688,
971
+ "learning_rate": 0.00016449267421013994,
972
+ "loss": 0.8499,
973
+ "step": 132
974
+ },
975
+ {
976
+ "epoch": 1.18,
977
+ "grad_norm": 0.22003490429847744,
978
+ "learning_rate": 0.00016394159716798807,
979
+ "loss": 0.9659,
980
+ "step": 133
981
+ },
982
+ {
983
+ "epoch": 1.19,
984
+ "grad_norm": 0.21977918206745437,
985
+ "learning_rate": 0.00016338721552901212,
986
+ "loss": 0.9213,
987
+ "step": 134
988
+ },
989
+ {
990
+ "epoch": 1.2,
991
+ "grad_norm": 0.2076993903333204,
992
+ "learning_rate": 0.0001628295579444796,
993
+ "loss": 0.8119,
994
+ "step": 135
995
+ },
996
+ {
997
+ "epoch": 1.21,
998
+ "grad_norm": 0.2001771499954729,
999
+ "learning_rate": 0.0001622686532349637,
1000
+ "loss": 0.9183,
1001
+ "step": 136
1002
+ },
1003
+ {
1004
+ "epoch": 1.22,
1005
+ "grad_norm": 0.18671550149366203,
1006
+ "learning_rate": 0.00016170453038885394,
1007
+ "loss": 0.8836,
1008
+ "step": 137
1009
+ },
1010
+ {
1011
+ "epoch": 1.23,
1012
+ "grad_norm": 0.20867427207572573,
1013
+ "learning_rate": 0.0001611372185608578,
1014
+ "loss": 0.9964,
1015
+ "step": 138
1016
+ },
1017
+ {
1018
+ "epoch": 1.24,
1019
+ "grad_norm": 0.20035138443113176,
1020
+ "learning_rate": 0.0001605667470704942,
1021
+ "loss": 0.9209,
1022
+ "step": 139
1023
+ },
1024
+ {
1025
+ "epoch": 1.25,
1026
+ "grad_norm": 0.22696612020505577,
1027
+ "learning_rate": 0.0001599931454005781,
1028
+ "loss": 1.0162,
1029
+ "step": 140
1030
+ },
1031
+ {
1032
+ "epoch": 1.25,
1033
+ "eval_loss": 1.2188584804534912,
1034
+ "eval_runtime": 13.249,
1035
+ "eval_samples_per_second": 22.643,
1036
+ "eval_steps_per_second": 2.868,
1037
+ "step": 140
1038
+ },
1039
+ {
1040
+ "epoch": 1.26,
1041
+ "grad_norm": 0.21554353495018647,
1042
+ "learning_rate": 0.00015941644319569665,
1043
+ "loss": 1.0487,
1044
+ "step": 141
1045
+ },
1046
+ {
1047
+ "epoch": 1.26,
1048
+ "grad_norm": 0.22894492131909072,
1049
+ "learning_rate": 0.00015883667026067745,
1050
+ "loss": 0.9352,
1051
+ "step": 142
1052
+ },
1053
+ {
1054
+ "epoch": 1.27,
1055
+ "grad_norm": 0.19145184577172686,
1056
+ "learning_rate": 0.00015825385655904788,
1057
+ "loss": 0.8878,
1058
+ "step": 143
1059
+ },
1060
+ {
1061
+ "epoch": 1.28,
1062
+ "grad_norm": 0.22544664152936575,
1063
+ "learning_rate": 0.00015766803221148673,
1064
+ "loss": 1.0,
1065
+ "step": 144
1066
+ },
1067
+ {
1068
+ "epoch": 1.29,
1069
+ "grad_norm": 0.26000661355557114,
1070
+ "learning_rate": 0.00015707922749426737,
1071
+ "loss": 0.9339,
1072
+ "step": 145
1073
+ },
1074
+ {
1075
+ "epoch": 1.3,
1076
+ "grad_norm": 0.24433845134512236,
1077
+ "learning_rate": 0.00015648747283769317,
1078
+ "loss": 0.9474,
1079
+ "step": 146
1080
+ },
1081
+ {
1082
+ "epoch": 1.31,
1083
+ "grad_norm": 0.21973931169609887,
1084
+ "learning_rate": 0.00015589279882452476,
1085
+ "loss": 0.9357,
1086
+ "step": 147
1087
+ },
1088
+ {
1089
+ "epoch": 1.32,
1090
+ "grad_norm": 0.23929008733305812,
1091
+ "learning_rate": 0.0001552952361883994,
1092
+ "loss": 0.9985,
1093
+ "step": 148
1094
+ },
1095
+ {
1096
+ "epoch": 1.33,
1097
+ "grad_norm": 0.23431856747573573,
1098
+ "learning_rate": 0.00015469481581224272,
1099
+ "loss": 0.8913,
1100
+ "step": 149
1101
+ },
1102
+ {
1103
+ "epoch": 1.34,
1104
+ "grad_norm": 0.2233543327912565,
1105
+ "learning_rate": 0.00015409156872667258,
1106
+ "loss": 0.9877,
1107
+ "step": 150
1108
+ },
1109
+ {
1110
+ "epoch": 1.34,
1111
+ "grad_norm": 0.21281207674183256,
1112
+ "learning_rate": 0.0001534855261083954,
1113
+ "loss": 0.9071,
1114
+ "step": 151
1115
+ },
1116
+ {
1117
+ "epoch": 1.35,
1118
+ "grad_norm": 0.20314832700152685,
1119
+ "learning_rate": 0.00015287671927859494,
1120
+ "loss": 0.9373,
1121
+ "step": 152
1122
+ },
1123
+ {
1124
+ "epoch": 1.36,
1125
+ "grad_norm": 0.19648565819019825,
1126
+ "learning_rate": 0.00015226517970131343,
1127
+ "loss": 0.9469,
1128
+ "step": 153
1129
+ },
1130
+ {
1131
+ "epoch": 1.37,
1132
+ "grad_norm": 0.2262428264639853,
1133
+ "learning_rate": 0.00015165093898182562,
1134
+ "loss": 1.0066,
1135
+ "step": 154
1136
+ },
1137
+ {
1138
+ "epoch": 1.38,
1139
+ "grad_norm": 0.22253433035020442,
1140
+ "learning_rate": 0.00015103402886500525,
1141
+ "loss": 0.8875,
1142
+ "step": 155
1143
+ },
1144
+ {
1145
+ "epoch": 1.39,
1146
+ "grad_norm": 0.181161648904613,
1147
+ "learning_rate": 0.00015041448123368455,
1148
+ "loss": 0.9004,
1149
+ "step": 156
1150
+ },
1151
+ {
1152
+ "epoch": 1.4,
1153
+ "grad_norm": 0.20968483802367816,
1154
+ "learning_rate": 0.00014979232810700637,
1155
+ "loss": 0.9133,
1156
+ "step": 157
1157
+ },
1158
+ {
1159
+ "epoch": 1.41,
1160
+ "grad_norm": 0.20540509271288435,
1161
+ "learning_rate": 0.0001491676016387694,
1162
+ "loss": 0.8876,
1163
+ "step": 158
1164
+ },
1165
+ {
1166
+ "epoch": 1.42,
1167
+ "grad_norm": 0.18762795731312454,
1168
+ "learning_rate": 0.00014854033411576659,
1169
+ "loss": 0.933,
1170
+ "step": 159
1171
+ },
1172
+ {
1173
+ "epoch": 1.42,
1174
+ "grad_norm": 0.23223345997338857,
1175
+ "learning_rate": 0.00014791055795611624,
1176
+ "loss": 0.9182,
1177
+ "step": 160
1178
+ },
1179
+ {
1180
+ "epoch": 1.43,
1181
+ "grad_norm": 0.21932384461027146,
1182
+ "learning_rate": 0.00014727830570758678,
1183
+ "loss": 0.9514,
1184
+ "step": 161
1185
+ },
1186
+ {
1187
+ "epoch": 1.44,
1188
+ "grad_norm": 0.21819663730951108,
1189
+ "learning_rate": 0.0001466436100459146,
1190
+ "loss": 0.9162,
1191
+ "step": 162
1192
+ },
1193
+ {
1194
+ "epoch": 1.45,
1195
+ "grad_norm": 0.2325813323476676,
1196
+ "learning_rate": 0.00014600650377311522,
1197
+ "loss": 0.9308,
1198
+ "step": 163
1199
+ },
1200
+ {
1201
+ "epoch": 1.46,
1202
+ "grad_norm": 0.2568337182939043,
1203
+ "learning_rate": 0.0001453670198157883,
1204
+ "loss": 0.9995,
1205
+ "step": 164
1206
+ },
1207
+ {
1208
+ "epoch": 1.47,
1209
+ "grad_norm": 0.22578454460723413,
1210
+ "learning_rate": 0.00014472519122341566,
1211
+ "loss": 0.9052,
1212
+ "step": 165
1213
+ },
1214
+ {
1215
+ "epoch": 1.48,
1216
+ "grad_norm": 0.23564258958796755,
1217
+ "learning_rate": 0.00014408105116665336,
1218
+ "loss": 0.9714,
1219
+ "step": 166
1220
+ },
1221
+ {
1222
+ "epoch": 1.49,
1223
+ "grad_norm": 0.24266133562839415,
1224
+ "learning_rate": 0.00014343463293561734,
1225
+ "loss": 0.9219,
1226
+ "step": 167
1227
+ },
1228
+ {
1229
+ "epoch": 1.5,
1230
+ "grad_norm": 0.23472454708184465,
1231
+ "learning_rate": 0.00014278596993816308,
1232
+ "loss": 0.8762,
1233
+ "step": 168
1234
+ },
1235
+ {
1236
+ "epoch": 1.5,
1237
+ "eval_loss": 1.2197421789169312,
1238
+ "eval_runtime": 13.2616,
1239
+ "eval_samples_per_second": 22.622,
1240
+ "eval_steps_per_second": 2.865,
1241
+ "step": 168
1242
+ },
1243
+ {
1244
+ "epoch": 1.5,
1245
+ "grad_norm": 0.23623633375452713,
1246
+ "learning_rate": 0.00014213509569815884,
1247
+ "loss": 0.8809,
1248
+ "step": 169
1249
+ },
1250
+ {
1251
+ "epoch": 1.51,
1252
+ "grad_norm": 0.25344275204523486,
1253
+ "learning_rate": 0.00014148204385375321,
1254
+ "loss": 0.7972,
1255
+ "step": 170
1256
+ },
1257
+ {
1258
+ "epoch": 1.52,
1259
+ "grad_norm": 0.23111396119549557,
1260
+ "learning_rate": 0.0001408268481556366,
1261
+ "loss": 0.8228,
1262
+ "step": 171
1263
+ },
1264
+ {
1265
+ "epoch": 1.53,
1266
+ "grad_norm": 0.2510618369255398,
1267
+ "learning_rate": 0.00014016954246529696,
1268
+ "loss": 0.8849,
1269
+ "step": 172
1270
+ },
1271
+ {
1272
+ "epoch": 1.54,
1273
+ "grad_norm": 0.2764366116622668,
1274
+ "learning_rate": 0.0001395101607532698,
1275
+ "loss": 0.8936,
1276
+ "step": 173
1277
+ },
1278
+ {
1279
+ "epoch": 1.55,
1280
+ "grad_norm": 0.24325811719582827,
1281
+ "learning_rate": 0.00013884873709738257,
1282
+ "loss": 0.8602,
1283
+ "step": 174
1284
+ },
1285
+ {
1286
+ "epoch": 1.56,
1287
+ "grad_norm": 0.213781513838486,
1288
+ "learning_rate": 0.00013818530568099327,
1289
+ "loss": 0.9492,
1290
+ "step": 175
1291
+ },
1292
+ {
1293
+ "epoch": 1.57,
1294
+ "grad_norm": 0.2397396374239057,
1295
+ "learning_rate": 0.00013751990079122412,
1296
+ "loss": 1.0499,
1297
+ "step": 176
1298
+ },
1299
+ {
1300
+ "epoch": 1.58,
1301
+ "grad_norm": 0.21579907170368723,
1302
+ "learning_rate": 0.00013685255681718922,
1303
+ "loss": 0.9438,
1304
+ "step": 177
1305
+ },
1306
+ {
1307
+ "epoch": 1.58,
1308
+ "grad_norm": 0.2359312681928786,
1309
+ "learning_rate": 0.0001361833082482175,
1310
+ "loss": 0.9289,
1311
+ "step": 178
1312
+ },
1313
+ {
1314
+ "epoch": 1.59,
1315
+ "grad_norm": 0.2618189093396496,
1316
+ "learning_rate": 0.0001355121896720703,
1317
+ "loss": 0.981,
1318
+ "step": 179
1319
+ },
1320
+ {
1321
+ "epoch": 1.6,
1322
+ "grad_norm": 0.20876513773174135,
1323
+ "learning_rate": 0.00013483923577315348,
1324
+ "loss": 0.82,
1325
+ "step": 180
1326
+ },
1327
+ {
1328
+ "epoch": 1.61,
1329
+ "grad_norm": 0.22162748553995645,
1330
+ "learning_rate": 0.00013416448133072526,
1331
+ "loss": 1.0131,
1332
+ "step": 181
1333
+ },
1334
+ {
1335
+ "epoch": 1.62,
1336
+ "grad_norm": 0.20975549982451164,
1337
+ "learning_rate": 0.00013348796121709862,
1338
+ "loss": 0.8763,
1339
+ "step": 182
1340
+ },
1341
+ {
1342
+ "epoch": 1.63,
1343
+ "grad_norm": 0.22840397707525473,
1344
+ "learning_rate": 0.00013280971039583906,
1345
+ "loss": 0.949,
1346
+ "step": 183
1347
+ },
1348
+ {
1349
+ "epoch": 1.64,
1350
+ "grad_norm": 0.23384636230161737,
1351
+ "learning_rate": 0.0001321297639199575,
1352
+ "loss": 0.9567,
1353
+ "step": 184
1354
+ },
1355
+ {
1356
+ "epoch": 1.65,
1357
+ "grad_norm": 0.22905979409902957,
1358
+ "learning_rate": 0.000131448156930099,
1359
+ "loss": 0.9153,
1360
+ "step": 185
1361
+ },
1362
+ {
1363
+ "epoch": 1.66,
1364
+ "grad_norm": 0.27620894683694563,
1365
+ "learning_rate": 0.0001307649246527263,
1366
+ "loss": 0.8246,
1367
+ "step": 186
1368
+ },
1369
+ {
1370
+ "epoch": 1.66,
1371
+ "grad_norm": 0.23004170633106227,
1372
+ "learning_rate": 0.0001300801023982995,
1373
+ "loss": 1.0181,
1374
+ "step": 187
1375
+ },
1376
+ {
1377
+ "epoch": 1.67,
1378
+ "grad_norm": 0.2219849136264378,
1379
+ "learning_rate": 0.00012939372555945112,
1380
+ "loss": 0.9535,
1381
+ "step": 188
1382
+ },
1383
+ {
1384
+ "epoch": 1.68,
1385
+ "grad_norm": 0.24458750452490116,
1386
+ "learning_rate": 0.0001287058296091567,
1387
+ "loss": 0.8968,
1388
+ "step": 189
1389
+ },
1390
+ {
1391
+ "epoch": 1.69,
1392
+ "grad_norm": 0.2564337740159555,
1393
+ "learning_rate": 0.00012801645009890195,
1394
+ "loss": 0.7955,
1395
+ "step": 190
1396
+ },
1397
+ {
1398
+ "epoch": 1.7,
1399
+ "grad_norm": 0.24100850371438767,
1400
+ "learning_rate": 0.0001273256226568451,
1401
+ "loss": 0.9235,
1402
+ "step": 191
1403
+ },
1404
+ {
1405
+ "epoch": 1.71,
1406
+ "grad_norm": 0.24757089527873732,
1407
+ "learning_rate": 0.00012663338298597563,
1408
+ "loss": 1.007,
1409
+ "step": 192
1410
+ },
1411
+ {
1412
+ "epoch": 1.72,
1413
+ "grad_norm": 0.24701038583742888,
1414
+ "learning_rate": 0.00012593976686226904,
1415
+ "loss": 0.9885,
1416
+ "step": 193
1417
+ },
1418
+ {
1419
+ "epoch": 1.73,
1420
+ "grad_norm": 0.26373721125634964,
1421
+ "learning_rate": 0.0001252448101328381,
1422
+ "loss": 0.8785,
1423
+ "step": 194
1424
+ },
1425
+ {
1426
+ "epoch": 1.74,
1427
+ "grad_norm": 0.2227761464470136,
1428
+ "learning_rate": 0.00012454854871407994,
1429
+ "loss": 0.8806,
1430
+ "step": 195
1431
+ },
1432
+ {
1433
+ "epoch": 1.74,
1434
+ "grad_norm": 0.2283950634350429,
1435
+ "learning_rate": 0.00012385101858982005,
1436
+ "loss": 0.9053,
1437
+ "step": 196
1438
+ },
1439
+ {
1440
+ "epoch": 1.74,
1441
+ "eval_loss": 1.2198154926300049,
1442
+ "eval_runtime": 13.2208,
1443
+ "eval_samples_per_second": 22.692,
1444
+ "eval_steps_per_second": 2.874,
1445
+ "step": 196
1446
+ },
1447
+ {
1448
+ "epoch": 1.75,
1449
+ "grad_norm": 0.23406423788354982,
1450
+ "learning_rate": 0.00012315225580945252,
1451
+ "loss": 0.9397,
1452
+ "step": 197
1453
+ },
1454
+ {
1455
+ "epoch": 1.76,
1456
+ "grad_norm": 0.23807045727443327,
1457
+ "learning_rate": 0.0001224522964860769,
1458
+ "loss": 0.9712,
1459
+ "step": 198
1460
+ },
1461
+ {
1462
+ "epoch": 1.77,
1463
+ "grad_norm": 0.2463614808838948,
1464
+ "learning_rate": 0.00012175117679463187,
1465
+ "loss": 0.8558,
1466
+ "step": 199
1467
+ },
1468
+ {
1469
+ "epoch": 1.78,
1470
+ "grad_norm": 0.24737417059302014,
1471
+ "learning_rate": 0.00012104893297002567,
1472
+ "loss": 0.9723,
1473
+ "step": 200
1474
+ },
1475
+ {
1476
+ "epoch": 1.79,
1477
+ "grad_norm": 0.243750688050595,
1478
+ "learning_rate": 0.0001203456013052634,
1479
+ "loss": 0.964,
1480
+ "step": 201
1481
+ },
1482
+ {
1483
+ "epoch": 1.8,
1484
+ "grad_norm": 0.24572059557106538,
1485
+ "learning_rate": 0.00011964121814957137,
1486
+ "loss": 0.9109,
1487
+ "step": 202
1488
+ },
1489
+ {
1490
+ "epoch": 1.81,
1491
+ "grad_norm": 0.24044117903962453,
1492
+ "learning_rate": 0.00011893581990651848,
1493
+ "loss": 1.0019,
1494
+ "step": 203
1495
+ },
1496
+ {
1497
+ "epoch": 1.82,
1498
+ "grad_norm": 0.2737568489071465,
1499
+ "learning_rate": 0.00011822944303213486,
1500
+ "loss": 0.8893,
1501
+ "step": 204
1502
+ },
1503
+ {
1504
+ "epoch": 1.82,
1505
+ "grad_norm": 0.24122455882790084,
1506
+ "learning_rate": 0.00011752212403302784,
1507
+ "loss": 0.9162,
1508
+ "step": 205
1509
+ },
1510
+ {
1511
+ "epoch": 1.83,
1512
+ "grad_norm": 0.28991871401626856,
1513
+ "learning_rate": 0.00011681389946449504,
1514
+ "loss": 0.8555,
1515
+ "step": 206
1516
+ },
1517
+ {
1518
+ "epoch": 1.84,
1519
+ "grad_norm": 0.23767408810646548,
1520
+ "learning_rate": 0.00011610480592863531,
1521
+ "loss": 0.9936,
1522
+ "step": 207
1523
+ },
1524
+ {
1525
+ "epoch": 1.85,
1526
+ "grad_norm": 0.22614733706173062,
1527
+ "learning_rate": 0.00011539488007245702,
1528
+ "loss": 0.916,
1529
+ "step": 208
1530
+ },
1531
+ {
1532
+ "epoch": 1.86,
1533
+ "grad_norm": 0.22471992425846515,
1534
+ "learning_rate": 0.00011468415858598411,
1535
+ "loss": 0.8872,
1536
+ "step": 209
1537
+ },
1538
+ {
1539
+ "epoch": 1.87,
1540
+ "grad_norm": 0.22675717145909688,
1541
+ "learning_rate": 0.00011397267820035986,
1542
+ "loss": 0.8393,
1543
+ "step": 210
1544
+ },
1545
+ {
1546
+ "epoch": 1.88,
1547
+ "grad_norm": 0.2727459336483823,
1548
+ "learning_rate": 0.00011326047568594851,
1549
+ "loss": 0.8265,
1550
+ "step": 211
1551
+ },
1552
+ {
1553
+ "epoch": 1.89,
1554
+ "grad_norm": 0.25216778031670767,
1555
+ "learning_rate": 0.00011254758785043515,
1556
+ "loss": 0.9939,
1557
+ "step": 212
1558
+ },
1559
+ {
1560
+ "epoch": 1.9,
1561
+ "grad_norm": 0.269147378424304,
1562
+ "learning_rate": 0.0001118340515369232,
1563
+ "loss": 0.9102,
1564
+ "step": 213
1565
+ },
1566
+ {
1567
+ "epoch": 1.91,
1568
+ "grad_norm": 0.2216178370833471,
1569
+ "learning_rate": 0.00011111990362203033,
1570
+ "loss": 0.8778,
1571
+ "step": 214
1572
+ },
1573
+ {
1574
+ "epoch": 1.91,
1575
+ "grad_norm": 0.2602474934716497,
1576
+ "learning_rate": 0.00011040518101398276,
1577
+ "loss": 0.9454,
1578
+ "step": 215
1579
+ },
1580
+ {
1581
+ "epoch": 1.92,
1582
+ "grad_norm": 0.2658635078442998,
1583
+ "learning_rate": 0.00010968992065070769,
1584
+ "loss": 0.8098,
1585
+ "step": 216
1586
+ },
1587
+ {
1588
+ "epoch": 1.93,
1589
+ "grad_norm": 0.20997905209488962,
1590
+ "learning_rate": 0.00010897415949792427,
1591
+ "loss": 0.9318,
1592
+ "step": 217
1593
+ },
1594
+ {
1595
+ "epoch": 1.94,
1596
+ "grad_norm": 0.24752453752221557,
1597
+ "learning_rate": 0.00010825793454723325,
1598
+ "loss": 0.949,
1599
+ "step": 218
1600
+ },
1601
+ {
1602
+ "epoch": 1.95,
1603
+ "grad_norm": 0.255579569750529,
1604
+ "learning_rate": 0.0001075412828142051,
1605
+ "loss": 0.915,
1606
+ "step": 219
1607
+ },
1608
+ {
1609
+ "epoch": 1.96,
1610
+ "grad_norm": 0.23186981930561867,
1611
+ "learning_rate": 0.0001068242413364671,
1612
+ "loss": 0.9132,
1613
+ "step": 220
1614
+ },
1615
+ {
1616
+ "epoch": 1.97,
1617
+ "grad_norm": 0.35685140391438824,
1618
+ "learning_rate": 0.00010610684717178905,
1619
+ "loss": 0.9398,
1620
+ "step": 221
1621
+ },
1622
+ {
1623
+ "epoch": 1.98,
1624
+ "grad_norm": 0.27320389987223703,
1625
+ "learning_rate": 0.00010538913739616816,
1626
+ "loss": 0.857,
1627
+ "step": 222
1628
+ },
1629
+ {
1630
+ "epoch": 1.99,
1631
+ "grad_norm": 0.2324276771141761,
1632
+ "learning_rate": 0.00010467114910191289,
1633
+ "loss": 0.8546,
1634
+ "step": 223
1635
+ },
1636
+ {
1637
+ "epoch": 1.99,
1638
+ "grad_norm": 0.22820341349854167,
1639
+ "learning_rate": 0.00010395291939572593,
1640
+ "loss": 0.9301,
1641
+ "step": 224
1642
+ },
1643
+ {
1644
+ "epoch": 1.99,
1645
+ "eval_loss": 1.2246263027191162,
1646
+ "eval_runtime": 13.1981,
1647
+ "eval_samples_per_second": 22.731,
1648
+ "eval_steps_per_second": 2.879,
1649
+ "step": 224
1650
+ },
1651
+ {
1652
+ "epoch": 2.0,
1653
+ "grad_norm": 0.2289800489154315,
1654
+ "learning_rate": 0.00010323448539678653,
1655
+ "loss": 0.9922,
1656
+ "step": 225
1657
+ },
1658
+ {
1659
+ "epoch": 2.01,
1660
+ "grad_norm": 0.2673353778680862,
1661
+ "learning_rate": 0.00010251588423483205,
1662
+ "loss": 0.7779,
1663
+ "step": 226
1664
+ },
1665
+ {
1666
+ "epoch": 2.02,
1667
+ "grad_norm": 0.2420933678952559,
1668
+ "learning_rate": 0.0001017971530482392,
1669
+ "loss": 0.8044,
1670
+ "step": 227
1671
+ },
1672
+ {
1673
+ "epoch": 2.03,
1674
+ "grad_norm": 0.21799264660625498,
1675
+ "learning_rate": 0.00010107832898210439,
1676
+ "loss": 0.8773,
1677
+ "step": 228
1678
+ },
1679
+ {
1680
+ "epoch": 2.04,
1681
+ "grad_norm": 0.21443255695871016,
1682
+ "learning_rate": 0.00010035944918632429,
1683
+ "loss": 0.9031,
1684
+ "step": 229
1685
+ },
1686
+ {
1687
+ "epoch": 2.05,
1688
+ "grad_norm": 0.23983734165788242,
1689
+ "learning_rate": 9.96405508136757e-05,
1690
+ "loss": 0.9014,
1691
+ "step": 230
1692
+ },
1693
+ {
1694
+ "epoch": 2.06,
1695
+ "grad_norm": 0.27915481475799336,
1696
+ "learning_rate": 9.892167101789564e-05,
1697
+ "loss": 0.8853,
1698
+ "step": 231
1699
+ },
1700
+ {
1701
+ "epoch": 2.07,
1702
+ "grad_norm": 0.2688949371564916,
1703
+ "learning_rate": 9.820284695176082e-05,
1704
+ "loss": 0.8452,
1705
+ "step": 232
1706
+ },
1707
+ {
1708
+ "epoch": 2.07,
1709
+ "grad_norm": 0.2623278518867105,
1710
+ "learning_rate": 9.748411576516794e-05,
1711
+ "loss": 0.8612,
1712
+ "step": 233
1713
+ },
1714
+ {
1715
+ "epoch": 2.08,
1716
+ "grad_norm": 0.2710502639103885,
1717
+ "learning_rate": 9.676551460321349e-05,
1718
+ "loss": 0.8108,
1719
+ "step": 234
1720
+ },
1721
+ {
1722
+ "epoch": 2.09,
1723
+ "grad_norm": 0.282572880285737,
1724
+ "learning_rate": 9.60470806042741e-05,
1725
+ "loss": 0.7866,
1726
+ "step": 235
1727
+ },
1728
+ {
1729
+ "epoch": 2.1,
1730
+ "grad_norm": 0.2829396962922612,
1731
+ "learning_rate": 9.532885089808713e-05,
1732
+ "loss": 0.8557,
1733
+ "step": 236
1734
+ },
1735
+ {
1736
+ "epoch": 2.11,
1737
+ "grad_norm": 0.2721172338857335,
1738
+ "learning_rate": 9.461086260383187e-05,
1739
+ "loss": 0.7933,
1740
+ "step": 237
1741
+ },
1742
+ {
1743
+ "epoch": 2.12,
1744
+ "grad_norm": 0.29736638811364446,
1745
+ "learning_rate": 9.389315282821097e-05,
1746
+ "loss": 0.7674,
1747
+ "step": 238
1748
+ },
1749
+ {
1750
+ "epoch": 2.13,
1751
+ "grad_norm": 0.28571679920981263,
1752
+ "learning_rate": 9.317575866353292e-05,
1753
+ "loss": 0.7442,
1754
+ "step": 239
1755
+ },
1756
+ {
1757
+ "epoch": 2.14,
1758
+ "grad_norm": 0.264545167150173,
1759
+ "learning_rate": 9.245871718579491e-05,
1760
+ "loss": 0.8505,
1761
+ "step": 240
1762
+ },
1763
+ {
1764
+ "epoch": 2.15,
1765
+ "grad_norm": 0.30691085134027757,
1766
+ "learning_rate": 9.174206545276677e-05,
1767
+ "loss": 0.7898,
1768
+ "step": 241
1769
+ },
1770
+ {
1771
+ "epoch": 2.15,
1772
+ "grad_norm": 0.31375028121981235,
1773
+ "learning_rate": 9.102584050207578e-05,
1774
+ "loss": 0.7661,
1775
+ "step": 242
1776
+ },
1777
+ {
1778
+ "epoch": 2.16,
1779
+ "grad_norm": 0.28421530221837016,
1780
+ "learning_rate": 9.031007934929236e-05,
1781
+ "loss": 0.8328,
1782
+ "step": 243
1783
+ },
1784
+ {
1785
+ "epoch": 2.17,
1786
+ "grad_norm": 0.25601367811173414,
1787
+ "learning_rate": 8.959481898601728e-05,
1788
+ "loss": 0.8281,
1789
+ "step": 244
1790
+ },
1791
+ {
1792
+ "epoch": 2.18,
1793
+ "grad_norm": 0.2983724947729522,
1794
+ "learning_rate": 8.888009637796968e-05,
1795
+ "loss": 0.8567,
1796
+ "step": 245
1797
+ },
1798
+ {
1799
+ "epoch": 2.19,
1800
+ "grad_norm": 0.2545616786933236,
1801
+ "learning_rate": 8.81659484630768e-05,
1802
+ "loss": 0.9151,
1803
+ "step": 246
1804
+ },
1805
+ {
1806
+ "epoch": 2.2,
1807
+ "grad_norm": 0.23873712362647942,
1808
+ "learning_rate": 8.745241214956483e-05,
1809
+ "loss": 0.8818,
1810
+ "step": 247
1811
+ },
1812
+ {
1813
+ "epoch": 2.21,
1814
+ "grad_norm": 0.285331972404065,
1815
+ "learning_rate": 8.673952431405148e-05,
1816
+ "loss": 0.7983,
1817
+ "step": 248
1818
+ },
1819
+ {
1820
+ "epoch": 2.22,
1821
+ "grad_norm": 0.23897707291689843,
1822
+ "learning_rate": 8.602732179964017e-05,
1823
+ "loss": 0.8758,
1824
+ "step": 249
1825
+ },
1826
+ {
1827
+ "epoch": 2.23,
1828
+ "grad_norm": 0.2830966091447457,
1829
+ "learning_rate": 8.531584141401591e-05,
1830
+ "loss": 0.8714,
1831
+ "step": 250
1832
+ },
1833
+ {
1834
+ "epoch": 2.23,
1835
+ "grad_norm": 0.28872599217076506,
1836
+ "learning_rate": 8.4605119927543e-05,
1837
+ "loss": 0.8387,
1838
+ "step": 251
1839
+ },
1840
+ {
1841
+ "epoch": 2.24,
1842
+ "grad_norm": 0.2652236346400331,
1843
+ "learning_rate": 8.38951940713647e-05,
1844
+ "loss": 0.8232,
1845
+ "step": 252
1846
+ },
1847
+ {
1848
+ "epoch": 2.24,
1849
+ "eval_loss": 1.2432794570922852,
1850
+ "eval_runtime": 13.2405,
1851
+ "eval_samples_per_second": 22.658,
1852
+ "eval_steps_per_second": 2.87,
1853
+ "step": 252
1854
+ },
1855
+ {
1856
+ "epoch": 2.25,
1857
+ "grad_norm": 0.299978013524394,
1858
+ "learning_rate": 8.318610053550497e-05,
1859
+ "loss": 0.7321,
1860
+ "step": 253
1861
+ },
1862
+ {
1863
+ "epoch": 2.26,
1864
+ "grad_norm": 0.2740002835117391,
1865
+ "learning_rate": 8.247787596697218e-05,
1866
+ "loss": 0.7605,
1867
+ "step": 254
1868
+ },
1869
+ {
1870
+ "epoch": 2.27,
1871
+ "grad_norm": 0.2848366030132808,
1872
+ "learning_rate": 8.177055696786516e-05,
1873
+ "loss": 0.8485,
1874
+ "step": 255
1875
+ },
1876
+ {
1877
+ "epoch": 2.28,
1878
+ "grad_norm": 0.24847418856075218,
1879
+ "learning_rate": 8.106418009348157e-05,
1880
+ "loss": 0.7557,
1881
+ "step": 256
1882
+ },
1883
+ {
1884
+ "epoch": 2.29,
1885
+ "grad_norm": 0.33515508602624905,
1886
+ "learning_rate": 8.035878185042868e-05,
1887
+ "loss": 0.8015,
1888
+ "step": 257
1889
+ },
1890
+ {
1891
+ "epoch": 2.3,
1892
+ "grad_norm": 0.2905943721096322,
1893
+ "learning_rate": 7.965439869473664e-05,
1894
+ "loss": 0.8457,
1895
+ "step": 258
1896
+ },
1897
+ {
1898
+ "epoch": 2.31,
1899
+ "grad_norm": 0.3140679719552616,
1900
+ "learning_rate": 7.895106702997437e-05,
1901
+ "loss": 0.8559,
1902
+ "step": 259
1903
+ },
1904
+ {
1905
+ "epoch": 2.31,
1906
+ "grad_norm": 0.29745105018138573,
1907
+ "learning_rate": 7.824882320536814e-05,
1908
+ "loss": 0.7453,
1909
+ "step": 260
1910
+ },
1911
+ {
1912
+ "epoch": 2.32,
1913
+ "grad_norm": 0.29818631731197365,
1914
+ "learning_rate": 7.754770351392311e-05,
1915
+ "loss": 0.8354,
1916
+ "step": 261
1917
+ },
1918
+ {
1919
+ "epoch": 2.33,
1920
+ "grad_norm": 0.24721488944366407,
1921
+ "learning_rate": 7.684774419054747e-05,
1922
+ "loss": 0.7755,
1923
+ "step": 262
1924
+ },
1925
+ {
1926
+ "epoch": 2.34,
1927
+ "grad_norm": 0.31210442779019465,
1928
+ "learning_rate": 7.614898141017996e-05,
1929
+ "loss": 0.7208,
1930
+ "step": 263
1931
+ },
1932
+ {
1933
+ "epoch": 2.35,
1934
+ "grad_norm": 0.2873220240109992,
1935
+ "learning_rate": 7.54514512859201e-05,
1936
+ "loss": 0.7548,
1937
+ "step": 264
1938
+ },
1939
+ {
1940
+ "epoch": 2.36,
1941
+ "grad_norm": 0.3006634171776217,
1942
+ "learning_rate": 7.475518986716194e-05,
1943
+ "loss": 0.7566,
1944
+ "step": 265
1945
+ },
1946
+ {
1947
+ "epoch": 2.37,
1948
+ "grad_norm": 0.2799417613336026,
1949
+ "learning_rate": 7.406023313773097e-05,
1950
+ "loss": 0.727,
1951
+ "step": 266
1952
+ },
1953
+ {
1954
+ "epoch": 2.38,
1955
+ "grad_norm": 0.2451761866231664,
1956
+ "learning_rate": 7.336661701402439e-05,
1957
+ "loss": 0.9641,
1958
+ "step": 267
1959
+ },
1960
+ {
1961
+ "epoch": 2.39,
1962
+ "grad_norm": 0.305202611125298,
1963
+ "learning_rate": 7.267437734315492e-05,
1964
+ "loss": 0.7891,
1965
+ "step": 268
1966
+ },
1967
+ {
1968
+ "epoch": 2.39,
1969
+ "grad_norm": 0.29107717848747816,
1970
+ "learning_rate": 7.198354990109805e-05,
1971
+ "loss": 0.9032,
1972
+ "step": 269
1973
+ },
1974
+ {
1975
+ "epoch": 2.4,
1976
+ "grad_norm": 0.2688898665176787,
1977
+ "learning_rate": 7.129417039084333e-05,
1978
+ "loss": 0.8416,
1979
+ "step": 270
1980
+ },
1981
+ {
1982
+ "epoch": 2.41,
1983
+ "grad_norm": 0.2814206029778395,
1984
+ "learning_rate": 7.060627444054893e-05,
1985
+ "loss": 0.8443,
1986
+ "step": 271
1987
+ },
1988
+ {
1989
+ "epoch": 2.42,
1990
+ "grad_norm": 0.2862094867555512,
1991
+ "learning_rate": 6.99198976017005e-05,
1992
+ "loss": 0.8271,
1993
+ "step": 272
1994
+ },
1995
+ {
1996
+ "epoch": 2.43,
1997
+ "grad_norm": 0.3214647340394826,
1998
+ "learning_rate": 6.923507534727373e-05,
1999
+ "loss": 0.7793,
2000
+ "step": 273
2001
+ },
2002
+ {
2003
+ "epoch": 2.44,
2004
+ "grad_norm": 0.3033659714564417,
2005
+ "learning_rate": 6.855184306990106e-05,
2006
+ "loss": 0.7856,
2007
+ "step": 274
2008
+ },
2009
+ {
2010
+ "epoch": 2.45,
2011
+ "grad_norm": 0.3024382342577774,
2012
+ "learning_rate": 6.78702360800425e-05,
2013
+ "loss": 0.8633,
2014
+ "step": 275
2015
+ },
2016
+ {
2017
+ "epoch": 2.46,
2018
+ "grad_norm": 0.25803598196729505,
2019
+ "learning_rate": 6.719028960416098e-05,
2020
+ "loss": 0.8428,
2021
+ "step": 276
2022
+ },
2023
+ {
2024
+ "epoch": 2.47,
2025
+ "grad_norm": 0.35469202971401803,
2026
+ "learning_rate": 6.651203878290139e-05,
2027
+ "loss": 0.8665,
2028
+ "step": 277
2029
+ },
2030
+ {
2031
+ "epoch": 2.47,
2032
+ "grad_norm": 0.3122516837597691,
2033
+ "learning_rate": 6.583551866927475e-05,
2034
+ "loss": 0.8787,
2035
+ "step": 278
2036
+ },
2037
+ {
2038
+ "epoch": 2.48,
2039
+ "grad_norm": 0.3305470786367901,
2040
+ "learning_rate": 6.516076422684654e-05,
2041
+ "loss": 0.8765,
2042
+ "step": 279
2043
+ },
2044
+ {
2045
+ "epoch": 2.49,
2046
+ "grad_norm": 0.3324622666488467,
2047
+ "learning_rate": 6.448781032792972e-05,
2048
+ "loss": 0.8318,
2049
+ "step": 280
2050
+ },
2051
+ {
2052
+ "epoch": 2.49,
2053
+ "eval_loss": 1.2546111345291138,
2054
+ "eval_runtime": 13.2379,
2055
+ "eval_samples_per_second": 22.662,
2056
+ "eval_steps_per_second": 2.871,
2057
+ "step": 280
2058
+ },
2059
+ {
2060
+ "epoch": 2.5,
2061
+ "grad_norm": 0.342341713579355,
2062
+ "learning_rate": 6.381669175178248e-05,
2063
+ "loss": 0.9517,
2064
+ "step": 281
2065
+ },
2066
+ {
2067
+ "epoch": 2.51,
2068
+ "grad_norm": 0.33913458352374665,
2069
+ "learning_rate": 6.31474431828108e-05,
2070
+ "loss": 0.8564,
2071
+ "step": 282
2072
+ },
2073
+ {
2074
+ "epoch": 2.52,
2075
+ "grad_norm": 0.30528689383480295,
2076
+ "learning_rate": 6.248009920877592e-05,
2077
+ "loss": 0.8199,
2078
+ "step": 283
2079
+ },
2080
+ {
2081
+ "epoch": 2.53,
2082
+ "grad_norm": 0.29698648367254743,
2083
+ "learning_rate": 6.181469431900672e-05,
2084
+ "loss": 0.785,
2085
+ "step": 284
2086
+ },
2087
+ {
2088
+ "epoch": 2.54,
2089
+ "grad_norm": 0.32239262939282626,
2090
+ "learning_rate": 6.115126290261745e-05,
2091
+ "loss": 0.7794,
2092
+ "step": 285
2093
+ },
2094
+ {
2095
+ "epoch": 2.55,
2096
+ "grad_norm": 0.2694595905080167,
2097
+ "learning_rate": 6.048983924673022e-05,
2098
+ "loss": 0.8056,
2099
+ "step": 286
2100
+ },
2101
+ {
2102
+ "epoch": 2.55,
2103
+ "grad_norm": 0.3045496751154443,
2104
+ "learning_rate": 5.983045753470308e-05,
2105
+ "loss": 0.8164,
2106
+ "step": 287
2107
+ },
2108
+ {
2109
+ "epoch": 2.56,
2110
+ "grad_norm": 0.2927868214627918,
2111
+ "learning_rate": 5.917315184436345e-05,
2112
+ "loss": 0.8358,
2113
+ "step": 288
2114
+ },
2115
+ {
2116
+ "epoch": 2.57,
2117
+ "grad_norm": 0.2931914055644858,
2118
+ "learning_rate": 5.851795614624682e-05,
2119
+ "loss": 0.8011,
2120
+ "step": 289
2121
+ },
2122
+ {
2123
+ "epoch": 2.58,
2124
+ "grad_norm": 0.3158716819379082,
2125
+ "learning_rate": 5.786490430184115e-05,
2126
+ "loss": 0.8332,
2127
+ "step": 290
2128
+ },
2129
+ {
2130
+ "epoch": 2.59,
2131
+ "grad_norm": 0.3482519147352008,
2132
+ "learning_rate": 5.72140300618369e-05,
2133
+ "loss": 0.7621,
2134
+ "step": 291
2135
+ },
2136
+ {
2137
+ "epoch": 2.6,
2138
+ "grad_norm": 0.28652801822050894,
2139
+ "learning_rate": 5.656536706438267e-05,
2140
+ "loss": 0.77,
2141
+ "step": 292
2142
+ },
2143
+ {
2144
+ "epoch": 2.61,
2145
+ "grad_norm": 0.29691290613407717,
2146
+ "learning_rate": 5.591894883334667e-05,
2147
+ "loss": 0.9394,
2148
+ "step": 293
2149
+ },
2150
+ {
2151
+ "epoch": 2.62,
2152
+ "grad_norm": 0.26699581966985203,
2153
+ "learning_rate": 5.5274808776584367e-05,
2154
+ "loss": 0.7918,
2155
+ "step": 294
2156
+ },
2157
+ {
2158
+ "epoch": 2.63,
2159
+ "grad_norm": 0.2926923719762685,
2160
+ "learning_rate": 5.463298018421171e-05,
2161
+ "loss": 0.8723,
2162
+ "step": 295
2163
+ },
2164
+ {
2165
+ "epoch": 2.64,
2166
+ "grad_norm": 0.3403087263187063,
2167
+ "learning_rate": 5.399349622688479e-05,
2168
+ "loss": 0.8097,
2169
+ "step": 296
2170
+ },
2171
+ {
2172
+ "epoch": 2.64,
2173
+ "grad_norm": 0.34261233464532476,
2174
+ "learning_rate": 5.335638995408545e-05,
2175
+ "loss": 0.9032,
2176
+ "step": 297
2177
+ },
2178
+ {
2179
+ "epoch": 2.65,
2180
+ "grad_norm": 0.31315234759634086,
2181
+ "learning_rate": 5.272169429241325e-05,
2182
+ "loss": 0.82,
2183
+ "step": 298
2184
+ },
2185
+ {
2186
+ "epoch": 2.66,
2187
+ "grad_norm": 0.3179759425444047,
2188
+ "learning_rate": 5.208944204388377e-05,
2189
+ "loss": 0.8864,
2190
+ "step": 299
2191
+ },
2192
+ {
2193
+ "epoch": 2.67,
2194
+ "grad_norm": 0.3121296356843828,
2195
+ "learning_rate": 5.145966588423341e-05,
2196
+ "loss": 0.8258,
2197
+ "step": 300
2198
+ },
2199
+ {
2200
+ "epoch": 2.68,
2201
+ "grad_norm": 0.268436849924173,
2202
+ "learning_rate": 5.0832398361230596e-05,
2203
+ "loss": 0.8906,
2204
+ "step": 301
2205
+ },
2206
+ {
2207
+ "epoch": 2.69,
2208
+ "grad_norm": 0.2961161602467319,
2209
+ "learning_rate": 5.020767189299369e-05,
2210
+ "loss": 0.8828,
2211
+ "step": 302
2212
+ },
2213
+ {
2214
+ "epoch": 2.7,
2215
+ "grad_norm": 0.27743957099992345,
2216
+ "learning_rate": 4.9585518766315496e-05,
2217
+ "loss": 0.8251,
2218
+ "step": 303
2219
+ },
2220
+ {
2221
+ "epoch": 2.71,
2222
+ "grad_norm": 0.2949909861852426,
2223
+ "learning_rate": 4.896597113499479e-05,
2224
+ "loss": 0.7911,
2225
+ "step": 304
2226
+ },
2227
+ {
2228
+ "epoch": 2.72,
2229
+ "grad_norm": 0.3161115451278363,
2230
+ "learning_rate": 4.834906101817438e-05,
2231
+ "loss": 0.8157,
2232
+ "step": 305
2233
+ },
2234
+ {
2235
+ "epoch": 2.72,
2236
+ "grad_norm": 0.28720077046065867,
2237
+ "learning_rate": 4.773482029868657e-05,
2238
+ "loss": 0.82,
2239
+ "step": 306
2240
+ },
2241
+ {
2242
+ "epoch": 2.73,
2243
+ "grad_norm": 0.4045319357608716,
2244
+ "learning_rate": 4.712328072140505e-05,
2245
+ "loss": 0.8414,
2246
+ "step": 307
2247
+ },
2248
+ {
2249
+ "epoch": 2.74,
2250
+ "grad_norm": 0.3070232288390269,
2251
+ "learning_rate": 4.651447389160458e-05,
2252
+ "loss": 0.8427,
2253
+ "step": 308
2254
+ },
2255
+ {
2256
+ "epoch": 2.74,
2257
+ "eval_loss": 1.2574400901794434,
2258
+ "eval_runtime": 13.2473,
2259
+ "eval_samples_per_second": 22.646,
2260
+ "eval_steps_per_second": 2.869,
2261
+ "step": 308
2262
+ },
2263
+ {
2264
+ "epoch": 2.75,
2265
+ "grad_norm": 0.3214782806968351,
2266
+ "learning_rate": 4.5908431273327436e-05,
2267
+ "loss": 0.8469,
2268
+ "step": 309
2269
+ },
2270
+ {
2271
+ "epoch": 2.76,
2272
+ "grad_norm": 0.24241410698156174,
2273
+ "learning_rate": 4.530518418775733e-05,
2274
+ "loss": 0.8346,
2275
+ "step": 310
2276
+ },
2277
+ {
2278
+ "epoch": 2.77,
2279
+ "grad_norm": 0.3303263594210879,
2280
+ "learning_rate": 4.470476381160065e-05,
2281
+ "loss": 0.8298,
2282
+ "step": 311
2283
+ },
2284
+ {
2285
+ "epoch": 2.78,
2286
+ "grad_norm": 0.30711900849760865,
2287
+ "learning_rate": 4.4107201175475275e-05,
2288
+ "loss": 0.789,
2289
+ "step": 312
2290
+ },
2291
+ {
2292
+ "epoch": 2.79,
2293
+ "grad_norm": 0.2954465859389713,
2294
+ "learning_rate": 4.351252716230685e-05,
2295
+ "loss": 0.8029,
2296
+ "step": 313
2297
+ },
2298
+ {
2299
+ "epoch": 2.8,
2300
+ "grad_norm": 0.29925087091531116,
2301
+ "learning_rate": 4.292077250573266e-05,
2302
+ "loss": 0.8633,
2303
+ "step": 314
2304
+ },
2305
+ {
2306
+ "epoch": 2.8,
2307
+ "grad_norm": 0.3177611223775825,
2308
+ "learning_rate": 4.2331967788513295e-05,
2309
+ "loss": 0.76,
2310
+ "step": 315
2311
+ },
2312
+ {
2313
+ "epoch": 2.81,
2314
+ "grad_norm": 0.28642407848269513,
2315
+ "learning_rate": 4.174614344095213e-05,
2316
+ "loss": 0.823,
2317
+ "step": 316
2318
+ },
2319
+ {
2320
+ "epoch": 2.82,
2321
+ "grad_norm": 0.3243224656005062,
2322
+ "learning_rate": 4.116332973932256e-05,
2323
+ "loss": 0.7831,
2324
+ "step": 317
2325
+ },
2326
+ {
2327
+ "epoch": 2.83,
2328
+ "grad_norm": 0.34877334027822726,
2329
+ "learning_rate": 4.058355680430337e-05,
2330
+ "loss": 0.899,
2331
+ "step": 318
2332
+ },
2333
+ {
2334
+ "epoch": 2.84,
2335
+ "grad_norm": 0.28640325479143114,
2336
+ "learning_rate": 4.0006854599421926e-05,
2337
+ "loss": 0.8292,
2338
+ "step": 319
2339
+ },
2340
+ {
2341
+ "epoch": 2.85,
2342
+ "grad_norm": 0.3135316628014535,
2343
+ "learning_rate": 3.943325292950579e-05,
2344
+ "loss": 0.8731,
2345
+ "step": 320
2346
+ },
2347
+ {
2348
+ "epoch": 2.86,
2349
+ "grad_norm": 0.2949970604257085,
2350
+ "learning_rate": 3.886278143914219e-05,
2351
+ "loss": 0.8402,
2352
+ "step": 321
2353
+ },
2354
+ {
2355
+ "epoch": 2.87,
2356
+ "grad_norm": 0.30057896586780075,
2357
+ "learning_rate": 3.829546961114607e-05,
2358
+ "loss": 0.7713,
2359
+ "step": 322
2360
+ },
2361
+ {
2362
+ "epoch": 2.88,
2363
+ "grad_norm": 0.3558574270285126,
2364
+ "learning_rate": 3.773134676503629e-05,
2365
+ "loss": 0.8435,
2366
+ "step": 323
2367
+ },
2368
+ {
2369
+ "epoch": 2.88,
2370
+ "grad_norm": 0.29115288332943334,
2371
+ "learning_rate": 3.7170442055520415e-05,
2372
+ "loss": 0.9022,
2373
+ "step": 324
2374
+ },
2375
+ {
2376
+ "epoch": 2.89,
2377
+ "grad_norm": 0.3192074718527619,
2378
+ "learning_rate": 3.661278447098789e-05,
2379
+ "loss": 0.7662,
2380
+ "step": 325
2381
+ },
2382
+ {
2383
+ "epoch": 2.9,
2384
+ "grad_norm": 0.33335742888185405,
2385
+ "learning_rate": 3.605840283201195e-05,
2386
+ "loss": 0.8111,
2387
+ "step": 326
2388
+ },
2389
+ {
2390
+ "epoch": 2.91,
2391
+ "grad_norm": 0.29748212071395186,
2392
+ "learning_rate": 3.550732578986006e-05,
2393
+ "loss": 0.7543,
2394
+ "step": 327
2395
+ },
2396
+ {
2397
+ "epoch": 2.92,
2398
+ "grad_norm": 0.3680409192627914,
2399
+ "learning_rate": 3.495958182501325e-05,
2400
+ "loss": 0.8124,
2401
+ "step": 328
2402
+ },
2403
+ {
2404
+ "epoch": 2.93,
2405
+ "grad_norm": 0.27807302364345643,
2406
+ "learning_rate": 3.441519924569408e-05,
2407
+ "loss": 0.7856,
2408
+ "step": 329
2409
+ },
2410
+ {
2411
+ "epoch": 2.94,
2412
+ "grad_norm": 0.3050855823733691,
2413
+ "learning_rate": 3.387420618640379e-05,
2414
+ "loss": 0.8506,
2415
+ "step": 330
2416
+ },
2417
+ {
2418
+ "epoch": 2.95,
2419
+ "grad_norm": 0.3322620263029238,
2420
+ "learning_rate": 3.3336630606468134e-05,
2421
+ "loss": 0.8771,
2422
+ "step": 331
2423
+ },
2424
+ {
2425
+ "epoch": 2.96,
2426
+ "grad_norm": 0.3112008867427982,
2427
+ "learning_rate": 3.280250028859248e-05,
2428
+ "loss": 0.7785,
2429
+ "step": 332
2430
+ },
2431
+ {
2432
+ "epoch": 2.96,
2433
+ "grad_norm": 0.2839548329095365,
2434
+ "learning_rate": 3.227184283742591e-05,
2435
+ "loss": 0.9153,
2436
+ "step": 333
2437
+ },
2438
+ {
2439
+ "epoch": 2.97,
2440
+ "grad_norm": 0.34615397822650606,
2441
+ "learning_rate": 3.174468567813461e-05,
2442
+ "loss": 0.7753,
2443
+ "step": 334
2444
+ },
2445
+ {
2446
+ "epoch": 2.98,
2447
+ "grad_norm": 0.34691866307772695,
2448
+ "learning_rate": 3.122105605498442e-05,
2449
+ "loss": 0.851,
2450
+ "step": 335
2451
+ },
2452
+ {
2453
+ "epoch": 2.99,
2454
+ "grad_norm": 0.296369624391198,
2455
+ "learning_rate": 3.070098102993302e-05,
2456
+ "loss": 0.8572,
2457
+ "step": 336
2458
+ },
2459
+ {
2460
+ "epoch": 2.99,
2461
+ "eval_loss": 1.2511259317398071,
2462
+ "eval_runtime": 13.2202,
2463
+ "eval_samples_per_second": 22.692,
2464
+ "eval_steps_per_second": 2.874,
2465
+ "step": 336
2466
+ }
2467
+ ],
2468
+ "logging_steps": 1,
2469
+ "max_steps": 448,
2470
+ "num_input_tokens_seen": 0,
2471
+ "num_train_epochs": 4,
2472
+ "save_steps": 112,
2473
+ "total_flos": 4.005448726012232e+17,
2474
+ "train_batch_size": 2,
2475
+ "trial_name": null,
2476
+ "trial_params": null
2477
+ }
checkpoint-336/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d400c16f982c36b10268ff7e69e878c44d11f5fb692a61770a8e1efb50d4491c
3
+ size 6776
checkpoint-336/zero_to_fp32.py ADDED
@@ -0,0 +1,592 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _has_callable(obj, fn):
252
+ attr = getattr(obj, fn, None)
253
+ return callable(attr)
254
+
255
+
256
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
257
+ param_shapes = zero_model_states[0].param_shapes
258
+
259
+ # Reconstruction protocol:
260
+ #
261
+ # XXX: document this
262
+
263
+ if debug:
264
+ for i in range(world_size):
265
+ for j in range(len(fp32_flat_groups[0])):
266
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
267
+
268
+ # XXX: memory usage doubles here (zero2)
269
+ num_param_groups = len(fp32_flat_groups[0])
270
+ merged_single_partition_of_fp32_groups = []
271
+ for i in range(num_param_groups):
272
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
273
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
274
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
275
+ avail_numel = sum(
276
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
277
+
278
+ if debug:
279
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
280
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
281
+ # not asserting if there is a mismatch due to possible padding
282
+ print(f"Have {avail_numel} numels to process.")
283
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
284
+
285
+ # params
286
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
287
+ # out-of-core computing solution
288
+ total_numel = 0
289
+ total_params = 0
290
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
291
+ offset = 0
292
+ avail_numel = full_single_fp32_vector.numel()
293
+ for name, shape in shapes.items():
294
+
295
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
296
+ total_numel += unpartitioned_numel
297
+ total_params += 1
298
+
299
+ if debug:
300
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
301
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
302
+ offset += unpartitioned_numel
303
+
304
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
305
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
306
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
307
+ # live optimizer object, so we are checking that the numbers are within the right range
308
+ align_to = 2 * world_size
309
+
310
+ def zero2_align(x):
311
+ return align_to * math.ceil(x / align_to)
312
+
313
+ if debug:
314
+ print(f"original offset={offset}, avail_numel={avail_numel}")
315
+
316
+ offset = zero2_align(offset)
317
+ avail_numel = zero2_align(avail_numel)
318
+
319
+ if debug:
320
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
321
+
322
+ # Sanity check
323
+ if offset != avail_numel:
324
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
325
+
326
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
327
+
328
+
329
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
330
+ state_dict = OrderedDict()
331
+
332
+ # buffers
333
+ buffers = zero_model_states[0].buffers
334
+ state_dict.update(buffers)
335
+ if debug:
336
+ print(f"added {len(buffers)} buffers")
337
+
338
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
339
+
340
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
341
+
342
+ # recover shared parameters
343
+ for pair in zero_model_states[0].shared_params:
344
+ if pair[1] in state_dict:
345
+ state_dict[pair[0]] = state_dict[pair[1]]
346
+
347
+ return state_dict
348
+
349
+
350
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
351
+ remainder = unpartitioned_numel % world_size
352
+ padding_numel = (world_size - remainder) if remainder else 0
353
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
354
+ return partitioned_numel, padding_numel
355
+
356
+
357
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
358
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
359
+ return
360
+
361
+ if debug:
362
+ for i in range(world_size):
363
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
364
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
365
+
366
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
367
+ wanted_params = len(frozen_param_shapes)
368
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
369
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
370
+ print(f'Frozen params: Have {avail_numel} numels to process.')
371
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
372
+
373
+ total_params = 0
374
+ total_numel = 0
375
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
376
+ total_params += 1
377
+ unpartitioned_numel = shape.numel()
378
+ total_numel += unpartitioned_numel
379
+
380
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
381
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
382
+
383
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
384
+
385
+ if debug:
386
+ print(
387
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
388
+ )
389
+
390
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
391
+
392
+
393
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
394
+ param_shapes = zero_model_states[0].param_shapes
395
+ avail_numel = fp32_flat_groups[0].numel() * world_size
396
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
397
+ # param, re-consolidating each param, while dealing with padding if any
398
+
399
+ # merge list of dicts, preserving order
400
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
401
+
402
+ if debug:
403
+ for i in range(world_size):
404
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
405
+
406
+ wanted_params = len(param_shapes)
407
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
408
+ # not asserting if there is a mismatch due to possible padding
409
+ avail_numel = fp32_flat_groups[0].numel() * world_size
410
+ print(f"Trainable params: Have {avail_numel} numels to process.")
411
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
412
+
413
+ # params
414
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
415
+ # out-of-core computing solution
416
+ offset = 0
417
+ total_numel = 0
418
+ total_params = 0
419
+ for name, shape in param_shapes.items():
420
+
421
+ unpartitioned_numel = shape.numel()
422
+ total_numel += unpartitioned_numel
423
+ total_params += 1
424
+
425
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
426
+
427
+ if debug:
428
+ print(
429
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
430
+ )
431
+
432
+ # XXX: memory usage doubles here
433
+ state_dict[name] = torch.cat(
434
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
435
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
436
+ offset += partitioned_numel
437
+
438
+ offset *= world_size
439
+
440
+ # Sanity check
441
+ if offset != avail_numel:
442
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
443
+
444
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
445
+
446
+
447
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
448
+ state_dict = OrderedDict()
449
+
450
+ # buffers
451
+ buffers = zero_model_states[0].buffers
452
+ state_dict.update(buffers)
453
+ if debug:
454
+ print(f"added {len(buffers)} buffers")
455
+
456
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
457
+
458
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
459
+
460
+ # recover shared parameters
461
+ for pair in zero_model_states[0].shared_params:
462
+ if pair[1] in state_dict:
463
+ state_dict[pair[0]] = state_dict[pair[1]]
464
+
465
+ return state_dict
466
+
467
+
468
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
469
+ """
470
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
471
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
472
+ via a model hub.
473
+
474
+ Args:
475
+ - ``checkpoint_dir``: path to the desired checkpoint folder
476
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
477
+
478
+ Returns:
479
+ - pytorch ``state_dict``
480
+
481
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
482
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
483
+ the checkpoint.
484
+
485
+ A typical usage might be ::
486
+
487
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
488
+ # do the training and checkpoint saving
489
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
490
+ model = model.cpu() # move to cpu
491
+ model.load_state_dict(state_dict)
492
+ # submit to model hub or save the model to share with others
493
+
494
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
495
+ application. i.e. you will need to re-initialize the deepspeed engine, since
496
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
497
+
498
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
499
+
500
+ """
501
+ if tag is None:
502
+ latest_path = os.path.join(checkpoint_dir, 'latest')
503
+ if os.path.isfile(latest_path):
504
+ with open(latest_path, 'r') as fd:
505
+ tag = fd.read().strip()
506
+ else:
507
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
508
+
509
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
510
+
511
+ if not os.path.isdir(ds_checkpoint_dir):
512
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
513
+
514
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
515
+
516
+
517
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
518
+ """
519
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
520
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
521
+
522
+ Args:
523
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
524
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
525
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
526
+ """
527
+
528
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
529
+ print(f"Saving fp32 state dict to {output_file}")
530
+ torch.save(state_dict, output_file)
531
+
532
+
533
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
534
+ """
535
+ 1. Put the provided model to cpu
536
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
537
+ 3. Load it into the provided model
538
+
539
+ Args:
540
+ - ``model``: the model object to update
541
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
542
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
543
+
544
+ Returns:
545
+ - ``model`: modified model
546
+
547
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
548
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
549
+ conveniently placed for you in the checkpoint folder.
550
+
551
+ A typical usage might be ::
552
+
553
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
554
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
555
+ # submit to model hub or save the model to share with others
556
+
557
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
558
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
559
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
560
+
561
+ """
562
+ logger.info(f"Extracting fp32 weights")
563
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
564
+
565
+ logger.info(f"Overwriting model with fp32 weights")
566
+ model = model.cpu()
567
+ model.load_state_dict(state_dict, strict=False)
568
+
569
+ return model
570
+
571
+
572
+ if __name__ == "__main__":
573
+
574
+ parser = argparse.ArgumentParser()
575
+ parser.add_argument("checkpoint_dir",
576
+ type=str,
577
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
578
+ parser.add_argument(
579
+ "output_file",
580
+ type=str,
581
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
582
+ parser.add_argument("-t",
583
+ "--tag",
584
+ type=str,
585
+ default=None,
586
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
587
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
588
+ args = parser.parse_args()
589
+
590
+ debug = args.debug
591
+
592
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
checkpoint-372/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: google/gemma-7b-it
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.9.0
checkpoint-372/adapter_config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "google/gemma-7b-it",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 32,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "down_proj",
23
+ "o_proj",
24
+ "k_proj",
25
+ "q_proj",
26
+ "gate_proj",
27
+ "up_proj",
28
+ "v_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "use_dora": false,
32
+ "use_rslora": false
33
+ }
checkpoint-372/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c23b965687f7bf2e033e1e8051de69e24c99f3103c06606007e68485ebfabea
3
+ size 200068904
checkpoint-372/global_step372/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:712292fc7e5a6d570c1376cc3be7e12dab2d34fb7ffe48281da38c8053603a39
3
+ size 150126608
checkpoint-372/global_step372/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3c6bbd461df3af80fb33496e1907ef542102bfa96434d50c174fe80c0dd98e4
3
+ size 150126672
checkpoint-372/global_step372/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46fee0787345b6483d7a54f3ceeb3260a7a8bef008c22e24c18225027433ff01
3
+ size 150126736
checkpoint-372/global_step372/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0fbe9084b027f2164f5fa8039ea7d37a722d0e0f9f70b2a76fa605e462a2ad6e
3
+ size 150126736
checkpoint-372/global_step372/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a38ea9a669e473fff57e6c134dd6703ddacc9f123121be165e81bcdcad09513b
3
+ size 1896781286
checkpoint-372/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step372
checkpoint-372/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ebe22192845fac896cd970f52665ebcfd6b5796077804b55f0d8830fcfa32be
3
+ size 15024
checkpoint-372/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5bbd2194b05d2155d794f7732bdab8deaa38ee92f4c49fa250d0c9f0fd5f532
3
+ size 15024