Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +2 -0
- README.md +155 -0
- README1.md +153 -0
- adapter_config.json +33 -0
- adapter_model.bin +3 -0
- checkpoint-279/README.md +202 -0
- checkpoint-279/adapter_config.json +33 -0
- checkpoint-279/adapter_model.safetensors +3 -0
- checkpoint-279/global_step279/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-279/global_step279/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-279/global_step279/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- checkpoint-279/global_step279/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- checkpoint-279/global_step279/mp_rank_00_model_states.pt +3 -0
- checkpoint-279/latest +1 -0
- checkpoint-279/rng_state_0.pth +3 -0
- checkpoint-279/rng_state_1.pth +3 -0
- checkpoint-279/rng_state_2.pth +3 -0
- checkpoint-279/rng_state_3.pth +3 -0
- checkpoint-279/scheduler.pt +3 -0
- checkpoint-279/trainer_state.json +2070 -0
- checkpoint-279/training_args.bin +3 -0
- checkpoint-279/zero_to_fp32.py +592 -0
- checkpoint-336/README.md +202 -0
- checkpoint-336/adapter_config.json +33 -0
- checkpoint-336/adapter_model.safetensors +3 -0
- checkpoint-336/global_step336/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-336/global_step336/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-336/global_step336/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- checkpoint-336/global_step336/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- checkpoint-336/global_step336/mp_rank_00_model_states.pt +3 -0
- checkpoint-336/latest +1 -0
- checkpoint-336/rng_state_0.pth +3 -0
- checkpoint-336/rng_state_1.pth +3 -0
- checkpoint-336/rng_state_2.pth +3 -0
- checkpoint-336/rng_state_3.pth +3 -0
- checkpoint-336/scheduler.pt +3 -0
- checkpoint-336/trainer_state.json +2477 -0
- checkpoint-336/training_args.bin +3 -0
- checkpoint-336/zero_to_fp32.py +592 -0
- checkpoint-372/README.md +202 -0
- checkpoint-372/adapter_config.json +33 -0
- checkpoint-372/adapter_model.safetensors +3 -0
- checkpoint-372/global_step372/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-372/global_step372/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-372/global_step372/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- checkpoint-372/global_step372/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- checkpoint-372/global_step372/mp_rank_00_model_states.pt +3 -0
- checkpoint-372/latest +1 -0
- checkpoint-372/rng_state_0.pth +3 -0
- checkpoint-372/rng_state_1.pth +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
merged/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
37 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
library_name: peft
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
base_model: google/gemma-7b-it
|
7 |
+
model-index:
|
8 |
+
- name: out
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|
16 |
+
<details><summary>See axolotl config</summary>
|
17 |
+
|
18 |
+
axolotl version: `0.4.0`
|
19 |
+
```yaml
|
20 |
+
# use google/gemma-7b if you have access
|
21 |
+
base_model: google/gemma-7b-it
|
22 |
+
model_type: AutoModelForCausalLM
|
23 |
+
tokenizer_type: AutoTokenizer
|
24 |
+
|
25 |
+
load_in_8bit: false
|
26 |
+
load_in_4bit: true
|
27 |
+
strict: false
|
28 |
+
|
29 |
+
# huggingface repo
|
30 |
+
datasets:
|
31 |
+
- path: ./python-oasst/chunk_1.jsonl
|
32 |
+
type: oasst
|
33 |
+
val_set_size: 0.1
|
34 |
+
output_dir: ./out
|
35 |
+
|
36 |
+
adapter: qlora
|
37 |
+
lora_r: 32
|
38 |
+
lora_alpha: 16
|
39 |
+
lora_dropout: 0.05
|
40 |
+
lora_target_linear: true
|
41 |
+
|
42 |
+
sequence_len: 4096
|
43 |
+
sample_packing: false
|
44 |
+
pad_to_sequence_len: true
|
45 |
+
|
46 |
+
wandb_project: gemma-7b-it
|
47 |
+
wandb_entity:
|
48 |
+
wandb_watch:
|
49 |
+
wandb_name:
|
50 |
+
wandb_log_model:
|
51 |
+
|
52 |
+
|
53 |
+
gradient_accumulation_steps: 6
|
54 |
+
micro_batch_size: 4
|
55 |
+
num_epochs: 4
|
56 |
+
optimizer: adamw_bnb_8bit
|
57 |
+
lr_scheduler: cosine
|
58 |
+
learning_rate: 0.0002
|
59 |
+
|
60 |
+
train_on_inputs: true
|
61 |
+
group_by_length: false
|
62 |
+
bf16: auto
|
63 |
+
fp16:
|
64 |
+
tf32: false
|
65 |
+
|
66 |
+
gradient_checkpointing: true
|
67 |
+
early_stopping_patience:
|
68 |
+
resume_from_checkpoint:
|
69 |
+
local_rank:
|
70 |
+
logging_steps: 1
|
71 |
+
xformers_attention:
|
72 |
+
flash_attention: true
|
73 |
+
|
74 |
+
warmup_ratio: 0.1
|
75 |
+
evals_per_epoch: 4
|
76 |
+
eval_table_size:
|
77 |
+
eval_max_new_tokens: 128
|
78 |
+
saves_per_epoch: 1
|
79 |
+
debug:
|
80 |
+
deepspeed: deepspeed_configs/zero1.json
|
81 |
+
weight_decay: 0.0
|
82 |
+
fsdp:
|
83 |
+
fsdp_config:
|
84 |
+
special_tokens:
|
85 |
+
|
86 |
+
```
|
87 |
+
|
88 |
+
</details><br>
|
89 |
+
|
90 |
+
# out
|
91 |
+
|
92 |
+
This model is a fine-tuned version of [google/gemma-7b-it](https://huggingface.co/google/gemma-7b-it) on the None dataset.
|
93 |
+
It achieves the following results on the evaluation set:
|
94 |
+
- Loss: 1.1911
|
95 |
+
|
96 |
+
## Model description
|
97 |
+
|
98 |
+
More information needed
|
99 |
+
|
100 |
+
## Intended uses & limitations
|
101 |
+
|
102 |
+
More information needed
|
103 |
+
|
104 |
+
## Training and evaluation data
|
105 |
+
|
106 |
+
More information needed
|
107 |
+
|
108 |
+
## Training procedure
|
109 |
+
|
110 |
+
### Training hyperparameters
|
111 |
+
|
112 |
+
The following hyperparameters were used during training:
|
113 |
+
- learning_rate: 0.0002
|
114 |
+
- train_batch_size: 4
|
115 |
+
- eval_batch_size: 4
|
116 |
+
- seed: 42
|
117 |
+
- distributed_type: multi-GPU
|
118 |
+
- num_devices: 4
|
119 |
+
- gradient_accumulation_steps: 6
|
120 |
+
- total_train_batch_size: 96
|
121 |
+
- total_eval_batch_size: 16
|
122 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
123 |
+
- lr_scheduler_type: cosine
|
124 |
+
- lr_scheduler_warmup_steps: 9
|
125 |
+
- num_epochs: 4
|
126 |
+
|
127 |
+
### Training results
|
128 |
+
|
129 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
130 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
131 |
+
| 5.0474 | 0.01 | 1 | 5.9279 |
|
132 |
+
| 1.2191 | 0.26 | 24 | 1.2947 |
|
133 |
+
| 1.1165 | 0.51 | 48 | 1.1679 |
|
134 |
+
| 1.0711 | 0.77 | 72 | 1.1377 |
|
135 |
+
| 0.9546 | 1.02 | 96 | 1.1303 |
|
136 |
+
| 0.9309 | 1.28 | 120 | 1.1298 |
|
137 |
+
| 0.9588 | 1.54 | 144 | 1.1242 |
|
138 |
+
| 0.8553 | 1.79 | 168 | 1.1259 |
|
139 |
+
| 0.8231 | 2.05 | 192 | 1.1449 |
|
140 |
+
| 0.8154 | 2.31 | 216 | 1.1514 |
|
141 |
+
| 0.7354 | 2.56 | 240 | 1.1471 |
|
142 |
+
| 0.7577 | 2.82 | 264 | 1.1479 |
|
143 |
+
| 0.6647 | 3.07 | 288 | 1.1923 |
|
144 |
+
| 0.6928 | 3.33 | 312 | 1.1856 |
|
145 |
+
| 0.731 | 3.59 | 336 | 1.1890 |
|
146 |
+
| 0.7193 | 3.84 | 360 | 1.1911 |
|
147 |
+
|
148 |
+
|
149 |
+
### Framework versions
|
150 |
+
|
151 |
+
- PEFT 0.9.0
|
152 |
+
- Transformers 4.39.0.dev0
|
153 |
+
- Pytorch 2.1.2+cu118
|
154 |
+
- Datasets 2.18.0
|
155 |
+
- Tokenizers 0.15.0
|
README1.md
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
library_name: peft
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
base_model: google/gemma-7b-it
|
7 |
+
model-index:
|
8 |
+
- name: out
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
|
13 |
+
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|
14 |
+
<details><summary>See axolotl config</summary>
|
15 |
+
|
16 |
+
axolotl version: `0.4.0`
|
17 |
+
```yaml
|
18 |
+
# use google/gemma-7b if you have access
|
19 |
+
base_model: google/gemma-7b-it
|
20 |
+
model_type: AutoModelForCausalLM
|
21 |
+
tokenizer_type: AutoTokenizer
|
22 |
+
|
23 |
+
load_in_8bit: false
|
24 |
+
load_in_4bit: true
|
25 |
+
strict: false
|
26 |
+
|
27 |
+
# huggingface repo
|
28 |
+
datasets:
|
29 |
+
- path: ./python-oasst/chunk_1.jsonl
|
30 |
+
type: oasst
|
31 |
+
val_set_size: 0.1
|
32 |
+
output_dir: ./out
|
33 |
+
|
34 |
+
adapter: qlora
|
35 |
+
lora_r: 32
|
36 |
+
lora_alpha: 16
|
37 |
+
lora_dropout: 0.05
|
38 |
+
lora_target_linear: true
|
39 |
+
|
40 |
+
sequence_len: 4096
|
41 |
+
sample_packing: false
|
42 |
+
pad_to_sequence_len: true
|
43 |
+
|
44 |
+
wandb_project: gemma-7b-it
|
45 |
+
wandb_entity:
|
46 |
+
wandb_watch:
|
47 |
+
wandb_name:
|
48 |
+
wandb_log_model:
|
49 |
+
|
50 |
+
|
51 |
+
gradient_accumulation_steps: 6
|
52 |
+
micro_batch_size: 4
|
53 |
+
num_epochs: 4
|
54 |
+
optimizer: adamw_bnb_8bit
|
55 |
+
lr_scheduler: cosine
|
56 |
+
learning_rate: 0.0002
|
57 |
+
|
58 |
+
train_on_inputs: true
|
59 |
+
group_by_length: false
|
60 |
+
bf16: auto
|
61 |
+
fp16:
|
62 |
+
tf32: false
|
63 |
+
|
64 |
+
gradient_checkpointing: true
|
65 |
+
early_stopping_patience:
|
66 |
+
resume_from_checkpoint:
|
67 |
+
local_rank:
|
68 |
+
logging_steps: 1
|
69 |
+
xformers_attention:
|
70 |
+
flash_attention: true
|
71 |
+
|
72 |
+
warmup_ratio: 0.1
|
73 |
+
evals_per_epoch: 4
|
74 |
+
eval_table_size:
|
75 |
+
eval_max_new_tokens: 128
|
76 |
+
saves_per_epoch: 1
|
77 |
+
debug:
|
78 |
+
deepspeed: deepspeed_configs/zero1.json
|
79 |
+
weight_decay: 0.0
|
80 |
+
fsdp:
|
81 |
+
fsdp_config:
|
82 |
+
special_tokens:
|
83 |
+
|
84 |
+
```
|
85 |
+
|
86 |
+
</details><br>
|
87 |
+
|
88 |
+
# out
|
89 |
+
|
90 |
+
This model is a fine-tuned version of [google/gemma-7b-it](https://huggingface.co/google/gemma-7b-it) on the None dataset.
|
91 |
+
It achieves the following results on the evaluation set:
|
92 |
+
- Loss: 1.1911
|
93 |
+
|
94 |
+
## Model description
|
95 |
+
|
96 |
+
More information needed
|
97 |
+
|
98 |
+
## Intended uses & limitations
|
99 |
+
|
100 |
+
More information needed
|
101 |
+
|
102 |
+
## Training and evaluation data
|
103 |
+
|
104 |
+
More information needed
|
105 |
+
|
106 |
+
## Training procedure
|
107 |
+
|
108 |
+
### Training hyperparameters
|
109 |
+
|
110 |
+
The following hyperparameters were used during training:
|
111 |
+
- learning_rate: 0.0002
|
112 |
+
- train_batch_size: 4
|
113 |
+
- eval_batch_size: 4
|
114 |
+
- seed: 42
|
115 |
+
- distributed_type: multi-GPU
|
116 |
+
- num_devices: 4
|
117 |
+
- gradient_accumulation_steps: 6
|
118 |
+
- total_train_batch_size: 96
|
119 |
+
- total_eval_batch_size: 16
|
120 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
121 |
+
- lr_scheduler_type: cosine
|
122 |
+
- lr_scheduler_warmup_steps: 9
|
123 |
+
- num_epochs: 4
|
124 |
+
|
125 |
+
### Training results
|
126 |
+
|
127 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
128 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
129 |
+
| 5.0474 | 0.01 | 1 | 5.9279 |
|
130 |
+
| 1.2191 | 0.26 | 24 | 1.2947 |
|
131 |
+
| 1.1165 | 0.51 | 48 | 1.1679 |
|
132 |
+
| 1.0711 | 0.77 | 72 | 1.1377 |
|
133 |
+
| 0.9546 | 1.02 | 96 | 1.1303 |
|
134 |
+
| 0.9309 | 1.28 | 120 | 1.1298 |
|
135 |
+
| 0.9588 | 1.54 | 144 | 1.1242 |
|
136 |
+
| 0.8553 | 1.79 | 168 | 1.1259 |
|
137 |
+
| 0.8231 | 2.05 | 192 | 1.1449 |
|
138 |
+
| 0.8154 | 2.31 | 216 | 1.1514 |
|
139 |
+
| 0.7354 | 2.56 | 240 | 1.1471 |
|
140 |
+
| 0.7577 | 2.82 | 264 | 1.1479 |
|
141 |
+
| 0.6647 | 3.07 | 288 | 1.1923 |
|
142 |
+
| 0.6928 | 3.33 | 312 | 1.1856 |
|
143 |
+
| 0.731 | 3.59 | 336 | 1.1890 |
|
144 |
+
| 0.7193 | 3.84 | 360 | 1.1911 |
|
145 |
+
|
146 |
+
|
147 |
+
### Framework versions
|
148 |
+
|
149 |
+
- PEFT 0.9.0
|
150 |
+
- Transformers 4.39.0.dev0
|
151 |
+
- Pytorch 2.1.2+cu118
|
152 |
+
- Datasets 2.18.0
|
153 |
+
- Tokenizers 0.15.0
|
adapter_config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "google/gemma-7b-it",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": null,
|
7 |
+
"inference_mode": false,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"loftq_config": {},
|
12 |
+
"lora_alpha": 16,
|
13 |
+
"lora_dropout": 0.05,
|
14 |
+
"megatron_config": null,
|
15 |
+
"megatron_core": "megatron.core",
|
16 |
+
"modules_to_save": null,
|
17 |
+
"peft_type": "LORA",
|
18 |
+
"r": 32,
|
19 |
+
"rank_pattern": {},
|
20 |
+
"revision": null,
|
21 |
+
"target_modules": [
|
22 |
+
"gate_proj",
|
23 |
+
"up_proj",
|
24 |
+
"k_proj",
|
25 |
+
"q_proj",
|
26 |
+
"down_proj",
|
27 |
+
"v_proj",
|
28 |
+
"o_proj"
|
29 |
+
],
|
30 |
+
"task_type": "CAUSAL_LM",
|
31 |
+
"use_dora": false,
|
32 |
+
"use_rslora": false
|
33 |
+
}
|
adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:25b9fe36c6655d98214b7521f5d8d9f662fc0c4007a06eeefea535ccfec3dc1e
|
3 |
+
size 200078074
|
checkpoint-279/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: google/gemma-7b-it
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.9.0
|
checkpoint-279/adapter_config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "google/gemma-7b-it",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": null,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"loftq_config": {},
|
12 |
+
"lora_alpha": 16,
|
13 |
+
"lora_dropout": 0.05,
|
14 |
+
"megatron_config": null,
|
15 |
+
"megatron_core": "megatron.core",
|
16 |
+
"modules_to_save": null,
|
17 |
+
"peft_type": "LORA",
|
18 |
+
"r": 32,
|
19 |
+
"rank_pattern": {},
|
20 |
+
"revision": null,
|
21 |
+
"target_modules": [
|
22 |
+
"down_proj",
|
23 |
+
"o_proj",
|
24 |
+
"k_proj",
|
25 |
+
"q_proj",
|
26 |
+
"gate_proj",
|
27 |
+
"up_proj",
|
28 |
+
"v_proj"
|
29 |
+
],
|
30 |
+
"task_type": "CAUSAL_LM",
|
31 |
+
"use_dora": false,
|
32 |
+
"use_rslora": false
|
33 |
+
}
|
checkpoint-279/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0831f70d185dae9ca69f58be3eab596067ac52e75e3e97b46d23ecd486b83942
|
3 |
+
size 200068904
|
checkpoint-279/global_step279/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:90f2db91b1ca035dfa781beb0567b7cfaaf6646de04cc9a82d8e80069e7a5b09
|
3 |
+
size 150126608
|
checkpoint-279/global_step279/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9ec41ba7f5c3131e00c854ec2bbfca98e6a3321e5f2ddf6efdc6056fa008c5a
|
3 |
+
size 150126672
|
checkpoint-279/global_step279/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:41f227ca1d3c19b4cd53567e28a2d395c2e804bd38dfd9bb3c937adab1daf5a3
|
3 |
+
size 150126736
|
checkpoint-279/global_step279/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7e486ddf3459c4f6befb004a9374e7e4fb9bd64bba72dd2e6f7051ee89939988
|
3 |
+
size 150126736
|
checkpoint-279/global_step279/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:feed7b7a8694c54651374fb581d67d60790a016e23023446231557add62ffc80
|
3 |
+
size 1896781286
|
checkpoint-279/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step279
|
checkpoint-279/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a84c3f9fa55e23a5c4d93b108c705b57ba9a5ed816191e6dfbb6e72ad2857e6d
|
3 |
+
size 15024
|
checkpoint-279/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fbb1da31ff41578c72556d0a8b9b94abf6be26bf16b6456ecd87d2b611f5b9bd
|
3 |
+
size 15024
|
checkpoint-279/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:11a7b38529914886a43976df69af7f331315329e1d38788c57003ca4cd1a849f
|
3 |
+
size 15024
|
checkpoint-279/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7d65b4248464f467db8226c5cc4ba4aa32e06af0bf915b61ea8a2db71d16b5ce
|
3 |
+
size 15024
|
checkpoint-279/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:099f524a0aa9353b01bf7d70e5a899c6e8ee8efc46e982213631888df6e5111b
|
3 |
+
size 1064
|
checkpoint-279/trainer_state.json
ADDED
@@ -0,0 +1,2070 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 2.97864768683274,
|
5 |
+
"eval_steps": 24,
|
6 |
+
"global_step": 279,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.01,
|
13 |
+
"grad_norm": 1.8206765789002874,
|
14 |
+
"learning_rate": 2.2222222222222223e-05,
|
15 |
+
"loss": 5.0474,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.01,
|
20 |
+
"eval_loss": 5.927858829498291,
|
21 |
+
"eval_runtime": 117.3665,
|
22 |
+
"eval_samples_per_second": 8.512,
|
23 |
+
"eval_steps_per_second": 0.537,
|
24 |
+
"step": 1
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.02,
|
28 |
+
"grad_norm": 1.9889295079554647,
|
29 |
+
"learning_rate": 4.4444444444444447e-05,
|
30 |
+
"loss": 5.5569,
|
31 |
+
"step": 2
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.03,
|
35 |
+
"grad_norm": 1.8931443004310682,
|
36 |
+
"learning_rate": 6.666666666666667e-05,
|
37 |
+
"loss": 5.2383,
|
38 |
+
"step": 3
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.04,
|
42 |
+
"grad_norm": 2.195266234429632,
|
43 |
+
"learning_rate": 8.888888888888889e-05,
|
44 |
+
"loss": 5.4943,
|
45 |
+
"step": 4
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.05,
|
49 |
+
"grad_norm": 2.6001064132041503,
|
50 |
+
"learning_rate": 0.00011111111111111112,
|
51 |
+
"loss": 5.2602,
|
52 |
+
"step": 5
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 0.06,
|
56 |
+
"grad_norm": 3.26301463076567,
|
57 |
+
"learning_rate": 0.00013333333333333334,
|
58 |
+
"loss": 4.8182,
|
59 |
+
"step": 6
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.07,
|
63 |
+
"grad_norm": 3.476044691292363,
|
64 |
+
"learning_rate": 0.00015555555555555556,
|
65 |
+
"loss": 4.0432,
|
66 |
+
"step": 7
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 0.09,
|
70 |
+
"grad_norm": 3.378803229553045,
|
71 |
+
"learning_rate": 0.00017777777777777779,
|
72 |
+
"loss": 3.5212,
|
73 |
+
"step": 8
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.1,
|
77 |
+
"grad_norm": 3.9419449437137017,
|
78 |
+
"learning_rate": 0.0002,
|
79 |
+
"loss": 3.2239,
|
80 |
+
"step": 9
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.11,
|
84 |
+
"grad_norm": 5.8833082175146485,
|
85 |
+
"learning_rate": 0.00019999625498303932,
|
86 |
+
"loss": 3.4319,
|
87 |
+
"step": 10
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.12,
|
91 |
+
"grad_norm": 5.4690223843996515,
|
92 |
+
"learning_rate": 0.0001999850202126604,
|
93 |
+
"loss": 2.8167,
|
94 |
+
"step": 11
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 0.13,
|
98 |
+
"grad_norm": 7.009614336449043,
|
99 |
+
"learning_rate": 0.00019996629653035126,
|
100 |
+
"loss": 2.7966,
|
101 |
+
"step": 12
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.14,
|
105 |
+
"grad_norm": 6.254841874500106,
|
106 |
+
"learning_rate": 0.0001999400853385221,
|
107 |
+
"loss": 2.1336,
|
108 |
+
"step": 13
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.15,
|
112 |
+
"grad_norm": 6.037710889841169,
|
113 |
+
"learning_rate": 0.00019990638860040006,
|
114 |
+
"loss": 1.85,
|
115 |
+
"step": 14
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.16,
|
119 |
+
"grad_norm": 1.0500019118881985,
|
120 |
+
"learning_rate": 0.00019986520883988232,
|
121 |
+
"loss": 1.5964,
|
122 |
+
"step": 15
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.17,
|
126 |
+
"grad_norm": 0.6169710624824223,
|
127 |
+
"learning_rate": 0.00019981654914134686,
|
128 |
+
"loss": 1.4307,
|
129 |
+
"step": 16
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.18,
|
133 |
+
"grad_norm": 1.86114059095932,
|
134 |
+
"learning_rate": 0.00019976041314942155,
|
135 |
+
"loss": 1.4285,
|
136 |
+
"step": 17
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.19,
|
140 |
+
"grad_norm": 1.6513877610200167,
|
141 |
+
"learning_rate": 0.00019969680506871137,
|
142 |
+
"loss": 1.4621,
|
143 |
+
"step": 18
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 0.2,
|
147 |
+
"grad_norm": 1.4395882738454628,
|
148 |
+
"learning_rate": 0.000199625729663483,
|
149 |
+
"loss": 1.3561,
|
150 |
+
"step": 19
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 0.21,
|
154 |
+
"grad_norm": 0.70847060238536,
|
155 |
+
"learning_rate": 0.00019954719225730847,
|
156 |
+
"loss": 1.3565,
|
157 |
+
"step": 20
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"epoch": 0.22,
|
161 |
+
"grad_norm": 0.4331630595385925,
|
162 |
+
"learning_rate": 0.00019946119873266613,
|
163 |
+
"loss": 1.3374,
|
164 |
+
"step": 21
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.23,
|
168 |
+
"grad_norm": 0.5580281682185451,
|
169 |
+
"learning_rate": 0.0001993677555305002,
|
170 |
+
"loss": 1.313,
|
171 |
+
"step": 22
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.25,
|
175 |
+
"grad_norm": 0.5217443953771937,
|
176 |
+
"learning_rate": 0.00019926686964973813,
|
177 |
+
"loss": 1.2541,
|
178 |
+
"step": 23
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 0.26,
|
182 |
+
"grad_norm": 0.36823120314463453,
|
183 |
+
"learning_rate": 0.00019915854864676664,
|
184 |
+
"loss": 1.2191,
|
185 |
+
"step": 24
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 0.26,
|
189 |
+
"eval_loss": 1.2946609258651733,
|
190 |
+
"eval_runtime": 118.9039,
|
191 |
+
"eval_samples_per_second": 8.402,
|
192 |
+
"eval_steps_per_second": 0.53,
|
193 |
+
"step": 24
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"epoch": 0.27,
|
197 |
+
"grad_norm": 0.5797477063688413,
|
198 |
+
"learning_rate": 0.0001990428006348656,
|
199 |
+
"loss": 1.24,
|
200 |
+
"step": 25
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 0.28,
|
204 |
+
"grad_norm": 0.41369538857234545,
|
205 |
+
"learning_rate": 0.00019891963428360043,
|
206 |
+
"loss": 1.209,
|
207 |
+
"step": 26
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.29,
|
211 |
+
"grad_norm": 0.36666008426797836,
|
212 |
+
"learning_rate": 0.00019878905881817252,
|
213 |
+
"loss": 1.2543,
|
214 |
+
"step": 27
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"epoch": 0.3,
|
218 |
+
"grad_norm": 0.3976779691989045,
|
219 |
+
"learning_rate": 0.00019865108401872857,
|
220 |
+
"loss": 1.2431,
|
221 |
+
"step": 28
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"epoch": 0.31,
|
225 |
+
"grad_norm": 0.4992861718630414,
|
226 |
+
"learning_rate": 0.00019850572021962788,
|
227 |
+
"loss": 1.2471,
|
228 |
+
"step": 29
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"epoch": 0.32,
|
232 |
+
"grad_norm": 0.33729072192890136,
|
233 |
+
"learning_rate": 0.00019835297830866826,
|
234 |
+
"loss": 1.1933,
|
235 |
+
"step": 30
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"epoch": 0.33,
|
239 |
+
"grad_norm": 0.29373457949318904,
|
240 |
+
"learning_rate": 0.00019819286972627066,
|
241 |
+
"loss": 1.1761,
|
242 |
+
"step": 31
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 0.34,
|
246 |
+
"grad_norm": 0.5339184947140588,
|
247 |
+
"learning_rate": 0.0001980254064646223,
|
248 |
+
"loss": 1.165,
|
249 |
+
"step": 32
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.35,
|
253 |
+
"grad_norm": 0.38755069216510263,
|
254 |
+
"learning_rate": 0.00019785060106677818,
|
255 |
+
"loss": 1.1236,
|
256 |
+
"step": 33
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 0.36,
|
260 |
+
"grad_norm": 0.338373181403367,
|
261 |
+
"learning_rate": 0.00019766846662572191,
|
262 |
+
"loss": 1.2102,
|
263 |
+
"step": 34
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"epoch": 0.37,
|
267 |
+
"grad_norm": 0.39237714718744304,
|
268 |
+
"learning_rate": 0.00019747901678338496,
|
269 |
+
"loss": 1.1642,
|
270 |
+
"step": 35
|
271 |
+
},
|
272 |
+
{
|
273 |
+
"epoch": 0.38,
|
274 |
+
"grad_norm": 0.3614249847081747,
|
275 |
+
"learning_rate": 0.00019728226572962473,
|
276 |
+
"loss": 1.1387,
|
277 |
+
"step": 36
|
278 |
+
},
|
279 |
+
{
|
280 |
+
"epoch": 0.4,
|
281 |
+
"grad_norm": 0.28278007479509987,
|
282 |
+
"learning_rate": 0.00019707822820116193,
|
283 |
+
"loss": 1.0939,
|
284 |
+
"step": 37
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 0.41,
|
288 |
+
"grad_norm": 0.3008254873268798,
|
289 |
+
"learning_rate": 0.00019686691948047664,
|
290 |
+
"loss": 1.1346,
|
291 |
+
"step": 38
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 0.42,
|
295 |
+
"grad_norm": 0.4263010439416343,
|
296 |
+
"learning_rate": 0.0001966483553946637,
|
297 |
+
"loss": 1.1015,
|
298 |
+
"step": 39
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"epoch": 0.43,
|
302 |
+
"grad_norm": 0.32725448028464205,
|
303 |
+
"learning_rate": 0.00019642255231424729,
|
304 |
+
"loss": 1.1324,
|
305 |
+
"step": 40
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"epoch": 0.44,
|
309 |
+
"grad_norm": 0.3028242900588441,
|
310 |
+
"learning_rate": 0.00019618952715195475,
|
311 |
+
"loss": 1.1147,
|
312 |
+
"step": 41
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"epoch": 0.45,
|
316 |
+
"grad_norm": 0.33893311928252234,
|
317 |
+
"learning_rate": 0.00019594929736144976,
|
318 |
+
"loss": 1.0978,
|
319 |
+
"step": 42
|
320 |
+
},
|
321 |
+
{
|
322 |
+
"epoch": 0.46,
|
323 |
+
"grad_norm": 0.2786082334492372,
|
324 |
+
"learning_rate": 0.0001957018809360251,
|
325 |
+
"loss": 1.0933,
|
326 |
+
"step": 43
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 0.47,
|
330 |
+
"grad_norm": 0.2732185168098956,
|
331 |
+
"learning_rate": 0.00019544729640725498,
|
332 |
+
"loss": 1.084,
|
333 |
+
"step": 44
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 0.48,
|
337 |
+
"grad_norm": 0.33386436894143035,
|
338 |
+
"learning_rate": 0.00019518556284360696,
|
339 |
+
"loss": 1.0673,
|
340 |
+
"step": 45
|
341 |
+
},
|
342 |
+
{
|
343 |
+
"epoch": 0.49,
|
344 |
+
"grad_norm": 0.2761688734050621,
|
345 |
+
"learning_rate": 0.00019491669984901379,
|
346 |
+
"loss": 1.0523,
|
347 |
+
"step": 46
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"epoch": 0.5,
|
351 |
+
"grad_norm": 0.3346957388610895,
|
352 |
+
"learning_rate": 0.00019464072756140486,
|
353 |
+
"loss": 1.0913,
|
354 |
+
"step": 47
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 0.51,
|
358 |
+
"grad_norm": 0.30196058996924285,
|
359 |
+
"learning_rate": 0.0001943576666511982,
|
360 |
+
"loss": 1.1165,
|
361 |
+
"step": 48
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 0.51,
|
365 |
+
"eval_loss": 1.167867660522461,
|
366 |
+
"eval_runtime": 119.1485,
|
367 |
+
"eval_samples_per_second": 8.384,
|
368 |
+
"eval_steps_per_second": 0.529,
|
369 |
+
"step": 48
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 0.52,
|
373 |
+
"grad_norm": 0.27445390350987153,
|
374 |
+
"learning_rate": 0.00019406753831975203,
|
375 |
+
"loss": 1.1069,
|
376 |
+
"step": 49
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 0.53,
|
380 |
+
"grad_norm": 0.34729097228771255,
|
381 |
+
"learning_rate": 0.00019377036429777672,
|
382 |
+
"loss": 1.0567,
|
383 |
+
"step": 50
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"epoch": 0.54,
|
387 |
+
"grad_norm": 0.31314016575739406,
|
388 |
+
"learning_rate": 0.0001934661668437073,
|
389 |
+
"loss": 1.0875,
|
390 |
+
"step": 51
|
391 |
+
},
|
392 |
+
{
|
393 |
+
"epoch": 0.56,
|
394 |
+
"grad_norm": 0.29140014335226905,
|
395 |
+
"learning_rate": 0.0001931549687420364,
|
396 |
+
"loss": 1.0929,
|
397 |
+
"step": 52
|
398 |
+
},
|
399 |
+
{
|
400 |
+
"epoch": 0.57,
|
401 |
+
"grad_norm": 0.2638104110161505,
|
402 |
+
"learning_rate": 0.00019283679330160726,
|
403 |
+
"loss": 1.0963,
|
404 |
+
"step": 53
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"epoch": 0.58,
|
408 |
+
"grad_norm": 0.2833945318119855,
|
409 |
+
"learning_rate": 0.0001925116643538684,
|
410 |
+
"loss": 1.0535,
|
411 |
+
"step": 54
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"epoch": 0.59,
|
415 |
+
"grad_norm": 0.28672689795285417,
|
416 |
+
"learning_rate": 0.0001921796062510882,
|
417 |
+
"loss": 1.0699,
|
418 |
+
"step": 55
|
419 |
+
},
|
420 |
+
{
|
421 |
+
"epoch": 0.6,
|
422 |
+
"grad_norm": 0.261255409262294,
|
423 |
+
"learning_rate": 0.00019184064386453128,
|
424 |
+
"loss": 1.0658,
|
425 |
+
"step": 56
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"epoch": 0.61,
|
429 |
+
"grad_norm": 0.24304864434604007,
|
430 |
+
"learning_rate": 0.00019149480258259533,
|
431 |
+
"loss": 1.0441,
|
432 |
+
"step": 57
|
433 |
+
},
|
434 |
+
{
|
435 |
+
"epoch": 0.62,
|
436 |
+
"grad_norm": 0.2987107937915846,
|
437 |
+
"learning_rate": 0.00019114210830890969,
|
438 |
+
"loss": 1.0061,
|
439 |
+
"step": 58
|
440 |
+
},
|
441 |
+
{
|
442 |
+
"epoch": 0.63,
|
443 |
+
"grad_norm": 0.2617045441373282,
|
444 |
+
"learning_rate": 0.00019078258746039507,
|
445 |
+
"loss": 1.0578,
|
446 |
+
"step": 59
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"epoch": 0.64,
|
450 |
+
"grad_norm": 0.2577955355987167,
|
451 |
+
"learning_rate": 0.00019041626696528503,
|
452 |
+
"loss": 1.0333,
|
453 |
+
"step": 60
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 0.65,
|
457 |
+
"grad_norm": 0.2823058812174375,
|
458 |
+
"learning_rate": 0.0001900431742611089,
|
459 |
+
"loss": 1.0837,
|
460 |
+
"step": 61
|
461 |
+
},
|
462 |
+
{
|
463 |
+
"epoch": 0.66,
|
464 |
+
"grad_norm": 0.30425238718712166,
|
465 |
+
"learning_rate": 0.00018966333729263674,
|
466 |
+
"loss": 1.0619,
|
467 |
+
"step": 62
|
468 |
+
},
|
469 |
+
{
|
470 |
+
"epoch": 0.67,
|
471 |
+
"grad_norm": 0.29826831116146957,
|
472 |
+
"learning_rate": 0.0001892767845097864,
|
473 |
+
"loss": 1.056,
|
474 |
+
"step": 63
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 0.68,
|
478 |
+
"grad_norm": 0.22990267950533677,
|
479 |
+
"learning_rate": 0.00018888354486549237,
|
480 |
+
"loss": 1.061,
|
481 |
+
"step": 64
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 0.69,
|
485 |
+
"grad_norm": 0.27604852373975236,
|
486 |
+
"learning_rate": 0.00018848364781353744,
|
487 |
+
"loss": 1.0624,
|
488 |
+
"step": 65
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"epoch": 0.7,
|
492 |
+
"grad_norm": 0.302101014156969,
|
493 |
+
"learning_rate": 0.00018807712330634642,
|
494 |
+
"loss": 1.0965,
|
495 |
+
"step": 66
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"epoch": 0.72,
|
499 |
+
"grad_norm": 0.2532153192142023,
|
500 |
+
"learning_rate": 0.00018766400179274286,
|
501 |
+
"loss": 1.0972,
|
502 |
+
"step": 67
|
503 |
+
},
|
504 |
+
{
|
505 |
+
"epoch": 0.73,
|
506 |
+
"grad_norm": 0.23803088057755897,
|
507 |
+
"learning_rate": 0.00018724431421566823,
|
508 |
+
"loss": 1.0823,
|
509 |
+
"step": 68
|
510 |
+
},
|
511 |
+
{
|
512 |
+
"epoch": 0.74,
|
513 |
+
"grad_norm": 0.2200041903156331,
|
514 |
+
"learning_rate": 0.0001868180920098644,
|
515 |
+
"loss": 1.037,
|
516 |
+
"step": 69
|
517 |
+
},
|
518 |
+
{
|
519 |
+
"epoch": 0.75,
|
520 |
+
"grad_norm": 0.31123761066229655,
|
521 |
+
"learning_rate": 0.00018638536709951917,
|
522 |
+
"loss": 1.0689,
|
523 |
+
"step": 70
|
524 |
+
},
|
525 |
+
{
|
526 |
+
"epoch": 0.76,
|
527 |
+
"grad_norm": 0.2760757149384919,
|
528 |
+
"learning_rate": 0.00018594617189587512,
|
529 |
+
"loss": 1.0071,
|
530 |
+
"step": 71
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"epoch": 0.77,
|
534 |
+
"grad_norm": 0.2452672521810973,
|
535 |
+
"learning_rate": 0.00018550053929480202,
|
536 |
+
"loss": 1.0711,
|
537 |
+
"step": 72
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"epoch": 0.77,
|
541 |
+
"eval_loss": 1.1377497911453247,
|
542 |
+
"eval_runtime": 119.461,
|
543 |
+
"eval_samples_per_second": 8.363,
|
544 |
+
"eval_steps_per_second": 0.527,
|
545 |
+
"step": 72
|
546 |
+
},
|
547 |
+
{
|
548 |
+
"epoch": 0.78,
|
549 |
+
"grad_norm": 0.30897216290479246,
|
550 |
+
"learning_rate": 0.0001850485026743328,
|
551 |
+
"loss": 1.0508,
|
552 |
+
"step": 73
|
553 |
+
},
|
554 |
+
{
|
555 |
+
"epoch": 0.79,
|
556 |
+
"grad_norm": 0.24165903393157925,
|
557 |
+
"learning_rate": 0.00018459009589216364,
|
558 |
+
"loss": 1.046,
|
559 |
+
"step": 74
|
560 |
+
},
|
561 |
+
{
|
562 |
+
"epoch": 0.8,
|
563 |
+
"grad_norm": 0.2509819208307879,
|
564 |
+
"learning_rate": 0.00018412535328311814,
|
565 |
+
"loss": 1.0726,
|
566 |
+
"step": 75
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"epoch": 0.81,
|
570 |
+
"grad_norm": 0.26145395006758515,
|
571 |
+
"learning_rate": 0.00018365430965657526,
|
572 |
+
"loss": 0.9998,
|
573 |
+
"step": 76
|
574 |
+
},
|
575 |
+
{
|
576 |
+
"epoch": 0.82,
|
577 |
+
"grad_norm": 0.26920709605794424,
|
578 |
+
"learning_rate": 0.00018317700029386245,
|
579 |
+
"loss": 1.065,
|
580 |
+
"step": 77
|
581 |
+
},
|
582 |
+
{
|
583 |
+
"epoch": 0.83,
|
584 |
+
"grad_norm": 0.24226754926786417,
|
585 |
+
"learning_rate": 0.0001826934609456129,
|
586 |
+
"loss": 1.0489,
|
587 |
+
"step": 78
|
588 |
+
},
|
589 |
+
{
|
590 |
+
"epoch": 0.84,
|
591 |
+
"grad_norm": 0.3022365661006827,
|
592 |
+
"learning_rate": 0.00018220372782908777,
|
593 |
+
"loss": 1.0372,
|
594 |
+
"step": 79
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 0.85,
|
598 |
+
"grad_norm": 0.25795710005352673,
|
599 |
+
"learning_rate": 0.00018170783762546365,
|
600 |
+
"loss": 1.0128,
|
601 |
+
"step": 80
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 0.86,
|
605 |
+
"grad_norm": 0.3490748875058354,
|
606 |
+
"learning_rate": 0.00018120582747708502,
|
607 |
+
"loss": 1.0168,
|
608 |
+
"step": 81
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 0.88,
|
612 |
+
"grad_norm": 0.24938209735120945,
|
613 |
+
"learning_rate": 0.00018069773498468223,
|
614 |
+
"loss": 0.9586,
|
615 |
+
"step": 82
|
616 |
+
},
|
617 |
+
{
|
618 |
+
"epoch": 0.89,
|
619 |
+
"grad_norm": 0.2527612545099894,
|
620 |
+
"learning_rate": 0.00018018359820455536,
|
621 |
+
"loss": 1.0385,
|
622 |
+
"step": 83
|
623 |
+
},
|
624 |
+
{
|
625 |
+
"epoch": 0.9,
|
626 |
+
"grad_norm": 0.27528879975094916,
|
627 |
+
"learning_rate": 0.0001796634556457236,
|
628 |
+
"loss": 1.0328,
|
629 |
+
"step": 84
|
630 |
+
},
|
631 |
+
{
|
632 |
+
"epoch": 0.91,
|
633 |
+
"grad_norm": 0.2605002777661913,
|
634 |
+
"learning_rate": 0.0001791373462670411,
|
635 |
+
"loss": 0.9966,
|
636 |
+
"step": 85
|
637 |
+
},
|
638 |
+
{
|
639 |
+
"epoch": 0.92,
|
640 |
+
"grad_norm": 0.3117107796665858,
|
641 |
+
"learning_rate": 0.00017860530947427875,
|
642 |
+
"loss": 0.9772,
|
643 |
+
"step": 86
|
644 |
+
},
|
645 |
+
{
|
646 |
+
"epoch": 0.93,
|
647 |
+
"grad_norm": 0.28336227154677734,
|
648 |
+
"learning_rate": 0.0001780673851171728,
|
649 |
+
"loss": 1.0724,
|
650 |
+
"step": 87
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"epoch": 0.94,
|
654 |
+
"grad_norm": 0.42707817919652674,
|
655 |
+
"learning_rate": 0.0001775236134864401,
|
656 |
+
"loss": 1.0038,
|
657 |
+
"step": 88
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"epoch": 0.95,
|
661 |
+
"grad_norm": 0.29236016959846456,
|
662 |
+
"learning_rate": 0.0001769740353107602,
|
663 |
+
"loss": 1.0083,
|
664 |
+
"step": 89
|
665 |
+
},
|
666 |
+
{
|
667 |
+
"epoch": 0.96,
|
668 |
+
"grad_norm": 0.43295063403530637,
|
669 |
+
"learning_rate": 0.00017641869175372493,
|
670 |
+
"loss": 1.022,
|
671 |
+
"step": 90
|
672 |
+
},
|
673 |
+
{
|
674 |
+
"epoch": 0.97,
|
675 |
+
"grad_norm": 0.3086663897043129,
|
676 |
+
"learning_rate": 0.00017585762441075503,
|
677 |
+
"loss": 1.0303,
|
678 |
+
"step": 91
|
679 |
+
},
|
680 |
+
{
|
681 |
+
"epoch": 0.98,
|
682 |
+
"grad_norm": 0.2783768981163154,
|
683 |
+
"learning_rate": 0.0001752908753059849,
|
684 |
+
"loss": 1.061,
|
685 |
+
"step": 92
|
686 |
+
},
|
687 |
+
{
|
688 |
+
"epoch": 0.99,
|
689 |
+
"grad_norm": 0.43168501819843275,
|
690 |
+
"learning_rate": 0.00017471848688911464,
|
691 |
+
"loss": 1.0631,
|
692 |
+
"step": 93
|
693 |
+
},
|
694 |
+
{
|
695 |
+
"epoch": 1.0,
|
696 |
+
"grad_norm": 0.25487494913299935,
|
697 |
+
"learning_rate": 0.0001741405020322309,
|
698 |
+
"loss": 0.9858,
|
699 |
+
"step": 94
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 1.01,
|
703 |
+
"grad_norm": 0.3229761094582219,
|
704 |
+
"learning_rate": 0.00017355696402659548,
|
705 |
+
"loss": 0.9495,
|
706 |
+
"step": 95
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 1.02,
|
710 |
+
"grad_norm": 0.3178464701266748,
|
711 |
+
"learning_rate": 0.000172967916579403,
|
712 |
+
"loss": 0.9546,
|
713 |
+
"step": 96
|
714 |
+
},
|
715 |
+
{
|
716 |
+
"epoch": 1.02,
|
717 |
+
"eval_loss": 1.1303094625473022,
|
718 |
+
"eval_runtime": 119.6761,
|
719 |
+
"eval_samples_per_second": 8.348,
|
720 |
+
"eval_steps_per_second": 0.526,
|
721 |
+
"step": 96
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 1.04,
|
725 |
+
"grad_norm": 0.2534616980189548,
|
726 |
+
"learning_rate": 0.00017237340381050703,
|
727 |
+
"loss": 0.9509,
|
728 |
+
"step": 97
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"epoch": 1.05,
|
732 |
+
"grad_norm": 0.2354382873554396,
|
733 |
+
"learning_rate": 0.00017177347024911562,
|
734 |
+
"loss": 0.9611,
|
735 |
+
"step": 98
|
736 |
+
},
|
737 |
+
{
|
738 |
+
"epoch": 1.06,
|
739 |
+
"grad_norm": 0.2754259154521738,
|
740 |
+
"learning_rate": 0.00017116816083045602,
|
741 |
+
"loss": 0.9184,
|
742 |
+
"step": 99
|
743 |
+
},
|
744 |
+
{
|
745 |
+
"epoch": 1.07,
|
746 |
+
"grad_norm": 0.25868181129480755,
|
747 |
+
"learning_rate": 0.00017055752089240907,
|
748 |
+
"loss": 0.957,
|
749 |
+
"step": 100
|
750 |
+
},
|
751 |
+
{
|
752 |
+
"epoch": 1.08,
|
753 |
+
"grad_norm": 0.2383943586330267,
|
754 |
+
"learning_rate": 0.00016994159617211317,
|
755 |
+
"loss": 0.9638,
|
756 |
+
"step": 101
|
757 |
+
},
|
758 |
+
{
|
759 |
+
"epoch": 1.09,
|
760 |
+
"grad_norm": 0.2706420372628291,
|
761 |
+
"learning_rate": 0.0001693204328025389,
|
762 |
+
"loss": 0.9115,
|
763 |
+
"step": 102
|
764 |
+
},
|
765 |
+
{
|
766 |
+
"epoch": 1.1,
|
767 |
+
"grad_norm": 0.2751042656041904,
|
768 |
+
"learning_rate": 0.0001686940773090333,
|
769 |
+
"loss": 0.9277,
|
770 |
+
"step": 103
|
771 |
+
},
|
772 |
+
{
|
773 |
+
"epoch": 1.11,
|
774 |
+
"grad_norm": 0.27700872737428867,
|
775 |
+
"learning_rate": 0.00016806257660583534,
|
776 |
+
"loss": 0.9248,
|
777 |
+
"step": 104
|
778 |
+
},
|
779 |
+
{
|
780 |
+
"epoch": 1.12,
|
781 |
+
"grad_norm": 0.3350046312844708,
|
782 |
+
"learning_rate": 0.00016742597799256182,
|
783 |
+
"loss": 0.928,
|
784 |
+
"step": 105
|
785 |
+
},
|
786 |
+
{
|
787 |
+
"epoch": 1.13,
|
788 |
+
"grad_norm": 0.4055944986440079,
|
789 |
+
"learning_rate": 0.00016678432915066488,
|
790 |
+
"loss": 0.9074,
|
791 |
+
"step": 106
|
792 |
+
},
|
793 |
+
{
|
794 |
+
"epoch": 1.14,
|
795 |
+
"grad_norm": 0.2515177402600531,
|
796 |
+
"learning_rate": 0.00016613767813986044,
|
797 |
+
"loss": 0.9564,
|
798 |
+
"step": 107
|
799 |
+
},
|
800 |
+
{
|
801 |
+
"epoch": 1.15,
|
802 |
+
"grad_norm": 0.2571149695502646,
|
803 |
+
"learning_rate": 0.00016548607339452853,
|
804 |
+
"loss": 0.93,
|
805 |
+
"step": 108
|
806 |
+
},
|
807 |
+
{
|
808 |
+
"epoch": 1.16,
|
809 |
+
"grad_norm": 0.38608942941048996,
|
810 |
+
"learning_rate": 0.0001648295637200856,
|
811 |
+
"loss": 0.9281,
|
812 |
+
"step": 109
|
813 |
+
},
|
814 |
+
{
|
815 |
+
"epoch": 1.17,
|
816 |
+
"grad_norm": 0.31939838976976676,
|
817 |
+
"learning_rate": 0.000164168198289329,
|
818 |
+
"loss": 0.9914,
|
819 |
+
"step": 110
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 1.19,
|
823 |
+
"grad_norm": 0.30504937567650897,
|
824 |
+
"learning_rate": 0.00016350202663875386,
|
825 |
+
"loss": 0.9549,
|
826 |
+
"step": 111
|
827 |
+
},
|
828 |
+
{
|
829 |
+
"epoch": 1.2,
|
830 |
+
"grad_norm": 0.3320388344291162,
|
831 |
+
"learning_rate": 0.0001628310986648427,
|
832 |
+
"loss": 0.9086,
|
833 |
+
"step": 112
|
834 |
+
},
|
835 |
+
{
|
836 |
+
"epoch": 1.21,
|
837 |
+
"grad_norm": 0.27715569151296165,
|
838 |
+
"learning_rate": 0.0001621554646203284,
|
839 |
+
"loss": 0.8537,
|
840 |
+
"step": 113
|
841 |
+
},
|
842 |
+
{
|
843 |
+
"epoch": 1.22,
|
844 |
+
"grad_norm": 0.278787508566418,
|
845 |
+
"learning_rate": 0.0001614751751104301,
|
846 |
+
"loss": 0.9354,
|
847 |
+
"step": 114
|
848 |
+
},
|
849 |
+
{
|
850 |
+
"epoch": 1.23,
|
851 |
+
"grad_norm": 0.24483614460003267,
|
852 |
+
"learning_rate": 0.00016079028108906282,
|
853 |
+
"loss": 0.8996,
|
854 |
+
"step": 115
|
855 |
+
},
|
856 |
+
{
|
857 |
+
"epoch": 1.24,
|
858 |
+
"grad_norm": 0.37520609596400134,
|
859 |
+
"learning_rate": 0.0001601008338550211,
|
860 |
+
"loss": 0.9514,
|
861 |
+
"step": 116
|
862 |
+
},
|
863 |
+
{
|
864 |
+
"epoch": 1.25,
|
865 |
+
"grad_norm": 0.2565631505653599,
|
866 |
+
"learning_rate": 0.00015940688504813662,
|
867 |
+
"loss": 0.8984,
|
868 |
+
"step": 117
|
869 |
+
},
|
870 |
+
{
|
871 |
+
"epoch": 1.26,
|
872 |
+
"grad_norm": 0.26348552476529935,
|
873 |
+
"learning_rate": 0.00015870848664541044,
|
874 |
+
"loss": 0.8941,
|
875 |
+
"step": 118
|
876 |
+
},
|
877 |
+
{
|
878 |
+
"epoch": 1.27,
|
879 |
+
"grad_norm": 0.32431198985496534,
|
880 |
+
"learning_rate": 0.00015800569095711982,
|
881 |
+
"loss": 0.8876,
|
882 |
+
"step": 119
|
883 |
+
},
|
884 |
+
{
|
885 |
+
"epoch": 1.28,
|
886 |
+
"grad_norm": 0.29308039763069227,
|
887 |
+
"learning_rate": 0.00015729855062290022,
|
888 |
+
"loss": 0.9309,
|
889 |
+
"step": 120
|
890 |
+
},
|
891 |
+
{
|
892 |
+
"epoch": 1.28,
|
893 |
+
"eval_loss": 1.129751205444336,
|
894 |
+
"eval_runtime": 119.1497,
|
895 |
+
"eval_samples_per_second": 8.384,
|
896 |
+
"eval_steps_per_second": 0.529,
|
897 |
+
"step": 120
|
898 |
+
},
|
899 |
+
{
|
900 |
+
"epoch": 1.29,
|
901 |
+
"grad_norm": 0.2793291380060977,
|
902 |
+
"learning_rate": 0.0001565871186078025,
|
903 |
+
"loss": 0.9453,
|
904 |
+
"step": 121
|
905 |
+
},
|
906 |
+
{
|
907 |
+
"epoch": 1.3,
|
908 |
+
"grad_norm": 0.28873644301555734,
|
909 |
+
"learning_rate": 0.000155871448198326,
|
910 |
+
"loss": 0.9243,
|
911 |
+
"step": 122
|
912 |
+
},
|
913 |
+
{
|
914 |
+
"epoch": 1.31,
|
915 |
+
"grad_norm": 0.3086103724578039,
|
916 |
+
"learning_rate": 0.00015515159299842707,
|
917 |
+
"loss": 0.8877,
|
918 |
+
"step": 123
|
919 |
+
},
|
920 |
+
{
|
921 |
+
"epoch": 1.32,
|
922 |
+
"grad_norm": 0.30407892484693505,
|
923 |
+
"learning_rate": 0.00015442760692550443,
|
924 |
+
"loss": 0.9448,
|
925 |
+
"step": 124
|
926 |
+
},
|
927 |
+
{
|
928 |
+
"epoch": 1.33,
|
929 |
+
"grad_norm": 0.29771602861368474,
|
930 |
+
"learning_rate": 0.00015369954420636048,
|
931 |
+
"loss": 0.889,
|
932 |
+
"step": 125
|
933 |
+
},
|
934 |
+
{
|
935 |
+
"epoch": 1.35,
|
936 |
+
"grad_norm": 0.30480490158838136,
|
937 |
+
"learning_rate": 0.00015296745937313987,
|
938 |
+
"loss": 0.9405,
|
939 |
+
"step": 126
|
940 |
+
},
|
941 |
+
{
|
942 |
+
"epoch": 1.36,
|
943 |
+
"grad_norm": 0.2949192855418127,
|
944 |
+
"learning_rate": 0.00015223140725924495,
|
945 |
+
"loss": 0.9382,
|
946 |
+
"step": 127
|
947 |
+
},
|
948 |
+
{
|
949 |
+
"epoch": 1.37,
|
950 |
+
"grad_norm": 0.2813631863132807,
|
951 |
+
"learning_rate": 0.00015149144299522873,
|
952 |
+
"loss": 0.9526,
|
953 |
+
"step": 128
|
954 |
+
},
|
955 |
+
{
|
956 |
+
"epoch": 1.38,
|
957 |
+
"grad_norm": 0.28548924064070513,
|
958 |
+
"learning_rate": 0.00015074762200466556,
|
959 |
+
"loss": 0.9174,
|
960 |
+
"step": 129
|
961 |
+
},
|
962 |
+
{
|
963 |
+
"epoch": 1.39,
|
964 |
+
"grad_norm": 0.28137053449960464,
|
965 |
+
"learning_rate": 0.00015000000000000001,
|
966 |
+
"loss": 0.9244,
|
967 |
+
"step": 130
|
968 |
+
},
|
969 |
+
{
|
970 |
+
"epoch": 1.4,
|
971 |
+
"grad_norm": 0.2626750895717777,
|
972 |
+
"learning_rate": 0.00014924863297837378,
|
973 |
+
"loss": 0.9335,
|
974 |
+
"step": 131
|
975 |
+
},
|
976 |
+
{
|
977 |
+
"epoch": 1.41,
|
978 |
+
"grad_norm": 0.26686502371015536,
|
979 |
+
"learning_rate": 0.00014849357721743168,
|
980 |
+
"loss": 0.8948,
|
981 |
+
"step": 132
|
982 |
+
},
|
983 |
+
{
|
984 |
+
"epoch": 1.42,
|
985 |
+
"grad_norm": 0.3332273481179679,
|
986 |
+
"learning_rate": 0.00014773488927110633,
|
987 |
+
"loss": 0.9274,
|
988 |
+
"step": 133
|
989 |
+
},
|
990 |
+
{
|
991 |
+
"epoch": 1.43,
|
992 |
+
"grad_norm": 0.2528048763375234,
|
993 |
+
"learning_rate": 0.00014697262596538227,
|
994 |
+
"loss": 0.8731,
|
995 |
+
"step": 134
|
996 |
+
},
|
997 |
+
{
|
998 |
+
"epoch": 1.44,
|
999 |
+
"grad_norm": 0.27184211707488076,
|
1000 |
+
"learning_rate": 0.00014620684439403962,
|
1001 |
+
"loss": 0.9318,
|
1002 |
+
"step": 135
|
1003 |
+
},
|
1004 |
+
{
|
1005 |
+
"epoch": 1.45,
|
1006 |
+
"grad_norm": 0.3051111137538683,
|
1007 |
+
"learning_rate": 0.0001454376019143779,
|
1008 |
+
"loss": 0.9447,
|
1009 |
+
"step": 136
|
1010 |
+
},
|
1011 |
+
{
|
1012 |
+
"epoch": 1.46,
|
1013 |
+
"grad_norm": 0.28771401659835155,
|
1014 |
+
"learning_rate": 0.00014466495614291977,
|
1015 |
+
"loss": 0.9343,
|
1016 |
+
"step": 137
|
1017 |
+
},
|
1018 |
+
{
|
1019 |
+
"epoch": 1.47,
|
1020 |
+
"grad_norm": 0.28995797921621524,
|
1021 |
+
"learning_rate": 0.0001438889649510956,
|
1022 |
+
"loss": 0.8978,
|
1023 |
+
"step": 138
|
1024 |
+
},
|
1025 |
+
{
|
1026 |
+
"epoch": 1.48,
|
1027 |
+
"grad_norm": 0.2749930548874636,
|
1028 |
+
"learning_rate": 0.00014310968646090883,
|
1029 |
+
"loss": 0.924,
|
1030 |
+
"step": 139
|
1031 |
+
},
|
1032 |
+
{
|
1033 |
+
"epoch": 1.49,
|
1034 |
+
"grad_norm": 0.3097189537380989,
|
1035 |
+
"learning_rate": 0.0001423271790405828,
|
1036 |
+
"loss": 0.9574,
|
1037 |
+
"step": 140
|
1038 |
+
},
|
1039 |
+
{
|
1040 |
+
"epoch": 1.51,
|
1041 |
+
"grad_norm": 0.2449218990319832,
|
1042 |
+
"learning_rate": 0.00014154150130018866,
|
1043 |
+
"loss": 0.8475,
|
1044 |
+
"step": 141
|
1045 |
+
},
|
1046 |
+
{
|
1047 |
+
"epoch": 1.52,
|
1048 |
+
"grad_norm": 0.24856388098419674,
|
1049 |
+
"learning_rate": 0.0001407527120872557,
|
1050 |
+
"loss": 0.9381,
|
1051 |
+
"step": 142
|
1052 |
+
},
|
1053 |
+
{
|
1054 |
+
"epoch": 1.53,
|
1055 |
+
"grad_norm": 0.3169861882853132,
|
1056 |
+
"learning_rate": 0.00013996087048236358,
|
1057 |
+
"loss": 0.9141,
|
1058 |
+
"step": 143
|
1059 |
+
},
|
1060 |
+
{
|
1061 |
+
"epoch": 1.54,
|
1062 |
+
"grad_norm": 0.30689184261103974,
|
1063 |
+
"learning_rate": 0.00013916603579471705,
|
1064 |
+
"loss": 0.9588,
|
1065 |
+
"step": 144
|
1066 |
+
},
|
1067 |
+
{
|
1068 |
+
"epoch": 1.54,
|
1069 |
+
"eval_loss": 1.1242448091506958,
|
1070 |
+
"eval_runtime": 119.0725,
|
1071 |
+
"eval_samples_per_second": 8.39,
|
1072 |
+
"eval_steps_per_second": 0.529,
|
1073 |
+
"step": 144
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 1.55,
|
1077 |
+
"grad_norm": 0.2961514212977567,
|
1078 |
+
"learning_rate": 0.00013836826755770384,
|
1079 |
+
"loss": 0.9371,
|
1080 |
+
"step": 145
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 1.56,
|
1084 |
+
"grad_norm": 0.30790856503439346,
|
1085 |
+
"learning_rate": 0.00013756762552443553,
|
1086 |
+
"loss": 0.9612,
|
1087 |
+
"step": 146
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 1.57,
|
1091 |
+
"grad_norm": 0.3517398492864053,
|
1092 |
+
"learning_rate": 0.000136764169663272,
|
1093 |
+
"loss": 0.9253,
|
1094 |
+
"step": 147
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 1.58,
|
1098 |
+
"grad_norm": 0.26375798832515857,
|
1099 |
+
"learning_rate": 0.00013595796015332984,
|
1100 |
+
"loss": 0.8977,
|
1101 |
+
"step": 148
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 1.59,
|
1105 |
+
"grad_norm": 0.274348892672977,
|
1106 |
+
"learning_rate": 0.00013514905737997473,
|
1107 |
+
"loss": 0.8817,
|
1108 |
+
"step": 149
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 1.6,
|
1112 |
+
"grad_norm": 0.35917564750751624,
|
1113 |
+
"learning_rate": 0.00013433752193029886,
|
1114 |
+
"loss": 0.886,
|
1115 |
+
"step": 150
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 1.61,
|
1119 |
+
"grad_norm": 0.38175124377914293,
|
1120 |
+
"learning_rate": 0.00013352341458858265,
|
1121 |
+
"loss": 0.8576,
|
1122 |
+
"step": 151
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 1.62,
|
1126 |
+
"grad_norm": 0.249633953215678,
|
1127 |
+
"learning_rate": 0.00013270679633174218,
|
1128 |
+
"loss": 1.0066,
|
1129 |
+
"step": 152
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 1.63,
|
1133 |
+
"grad_norm": 0.33494494430574784,
|
1134 |
+
"learning_rate": 0.00013188772832476188,
|
1135 |
+
"loss": 0.884,
|
1136 |
+
"step": 153
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 1.64,
|
1140 |
+
"grad_norm": 0.4176467296744032,
|
1141 |
+
"learning_rate": 0.00013106627191611332,
|
1142 |
+
"loss": 0.9041,
|
1143 |
+
"step": 154
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 1.65,
|
1147 |
+
"grad_norm": 0.27051479454532207,
|
1148 |
+
"learning_rate": 0.00013024248863316012,
|
1149 |
+
"loss": 0.8764,
|
1150 |
+
"step": 155
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 1.67,
|
1154 |
+
"grad_norm": 0.29302599029848847,
|
1155 |
+
"learning_rate": 0.00012941644017754964,
|
1156 |
+
"loss": 0.9786,
|
1157 |
+
"step": 156
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 1.68,
|
1161 |
+
"grad_norm": 0.3127378512248151,
|
1162 |
+
"learning_rate": 0.00012858818842059145,
|
1163 |
+
"loss": 0.9176,
|
1164 |
+
"step": 157
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 1.69,
|
1168 |
+
"grad_norm": 0.40647077063662906,
|
1169 |
+
"learning_rate": 0.00012775779539862304,
|
1170 |
+
"loss": 0.9387,
|
1171 |
+
"step": 158
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 1.7,
|
1175 |
+
"grad_norm": 0.29290601694481777,
|
1176 |
+
"learning_rate": 0.00012692532330836346,
|
1177 |
+
"loss": 0.9192,
|
1178 |
+
"step": 159
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 1.71,
|
1182 |
+
"grad_norm": 0.2819168741245354,
|
1183 |
+
"learning_rate": 0.0001260908345022547,
|
1184 |
+
"loss": 0.9253,
|
1185 |
+
"step": 160
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 1.72,
|
1189 |
+
"grad_norm": 0.3772714091394927,
|
1190 |
+
"learning_rate": 0.00012525439148379128,
|
1191 |
+
"loss": 0.9264,
|
1192 |
+
"step": 161
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 1.73,
|
1196 |
+
"grad_norm": 0.29399851067321503,
|
1197 |
+
"learning_rate": 0.00012441605690283915,
|
1198 |
+
"loss": 0.9357,
|
1199 |
+
"step": 162
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"epoch": 1.74,
|
1203 |
+
"grad_norm": 0.2623180246832513,
|
1204 |
+
"learning_rate": 0.00012357589355094275,
|
1205 |
+
"loss": 0.8516,
|
1206 |
+
"step": 163
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"epoch": 1.75,
|
1210 |
+
"grad_norm": 0.27796942024085824,
|
1211 |
+
"learning_rate": 0.00012273396435662212,
|
1212 |
+
"loss": 0.9328,
|
1213 |
+
"step": 164
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 1.76,
|
1217 |
+
"grad_norm": 0.3107670297529076,
|
1218 |
+
"learning_rate": 0.0001218903323806595,
|
1219 |
+
"loss": 0.8769,
|
1220 |
+
"step": 165
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 1.77,
|
1224 |
+
"grad_norm": 0.2865573350738354,
|
1225 |
+
"learning_rate": 0.00012104506081137608,
|
1226 |
+
"loss": 0.9015,
|
1227 |
+
"step": 166
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 1.78,
|
1231 |
+
"grad_norm": 0.30595087117636693,
|
1232 |
+
"learning_rate": 0.00012019821295989912,
|
1233 |
+
"loss": 0.94,
|
1234 |
+
"step": 167
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 1.79,
|
1238 |
+
"grad_norm": 0.32540365653257874,
|
1239 |
+
"learning_rate": 0.00011934985225541998,
|
1240 |
+
"loss": 0.8553,
|
1241 |
+
"step": 168
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 1.79,
|
1245 |
+
"eval_loss": 1.1259374618530273,
|
1246 |
+
"eval_runtime": 119.4351,
|
1247 |
+
"eval_samples_per_second": 8.364,
|
1248 |
+
"eval_steps_per_second": 0.527,
|
1249 |
+
"step": 168
|
1250 |
+
},
|
1251 |
+
{
|
1252 |
+
"epoch": 1.8,
|
1253 |
+
"grad_norm": 0.3058868303314457,
|
1254 |
+
"learning_rate": 0.00011850004224044315,
|
1255 |
+
"loss": 0.9074,
|
1256 |
+
"step": 169
|
1257 |
+
},
|
1258 |
+
{
|
1259 |
+
"epoch": 1.81,
|
1260 |
+
"grad_norm": 0.33266760488242775,
|
1261 |
+
"learning_rate": 0.0001176488465660271,
|
1262 |
+
"loss": 0.8799,
|
1263 |
+
"step": 170
|
1264 |
+
},
|
1265 |
+
{
|
1266 |
+
"epoch": 1.83,
|
1267 |
+
"grad_norm": 0.3101183375673487,
|
1268 |
+
"learning_rate": 0.00011679632898701649,
|
1269 |
+
"loss": 0.9004,
|
1270 |
+
"step": 171
|
1271 |
+
},
|
1272 |
+
{
|
1273 |
+
"epoch": 1.84,
|
1274 |
+
"grad_norm": 0.31535579418195775,
|
1275 |
+
"learning_rate": 0.00011594255335726724,
|
1276 |
+
"loss": 0.9238,
|
1277 |
+
"step": 172
|
1278 |
+
},
|
1279 |
+
{
|
1280 |
+
"epoch": 1.85,
|
1281 |
+
"grad_norm": 0.28341827112854334,
|
1282 |
+
"learning_rate": 0.00011508758362486358,
|
1283 |
+
"loss": 0.9138,
|
1284 |
+
"step": 173
|
1285 |
+
},
|
1286 |
+
{
|
1287 |
+
"epoch": 1.86,
|
1288 |
+
"grad_norm": 0.25699888796695625,
|
1289 |
+
"learning_rate": 0.00011423148382732853,
|
1290 |
+
"loss": 0.9175,
|
1291 |
+
"step": 174
|
1292 |
+
},
|
1293 |
+
{
|
1294 |
+
"epoch": 1.87,
|
1295 |
+
"grad_norm": 0.29504332662698246,
|
1296 |
+
"learning_rate": 0.0001133743180868273,
|
1297 |
+
"loss": 0.9023,
|
1298 |
+
"step": 175
|
1299 |
+
},
|
1300 |
+
{
|
1301 |
+
"epoch": 1.88,
|
1302 |
+
"grad_norm": 0.2993175263873948,
|
1303 |
+
"learning_rate": 0.0001125161506053646,
|
1304 |
+
"loss": 0.8893,
|
1305 |
+
"step": 176
|
1306 |
+
},
|
1307 |
+
{
|
1308 |
+
"epoch": 1.89,
|
1309 |
+
"grad_norm": 0.2762659379409218,
|
1310 |
+
"learning_rate": 0.00011165704565997593,
|
1311 |
+
"loss": 0.9071,
|
1312 |
+
"step": 177
|
1313 |
+
},
|
1314 |
+
{
|
1315 |
+
"epoch": 1.9,
|
1316 |
+
"grad_norm": 0.23620994229530515,
|
1317 |
+
"learning_rate": 0.00011079706759791311,
|
1318 |
+
"loss": 0.8796,
|
1319 |
+
"step": 178
|
1320 |
+
},
|
1321 |
+
{
|
1322 |
+
"epoch": 1.91,
|
1323 |
+
"grad_norm": 0.28317619721877,
|
1324 |
+
"learning_rate": 0.00010993628083182467,
|
1325 |
+
"loss": 0.8983,
|
1326 |
+
"step": 179
|
1327 |
+
},
|
1328 |
+
{
|
1329 |
+
"epoch": 1.92,
|
1330 |
+
"grad_norm": 0.3252854551640304,
|
1331 |
+
"learning_rate": 0.00010907474983493144,
|
1332 |
+
"loss": 0.8947,
|
1333 |
+
"step": 180
|
1334 |
+
},
|
1335 |
+
{
|
1336 |
+
"epoch": 1.93,
|
1337 |
+
"grad_norm": 0.2579136274422669,
|
1338 |
+
"learning_rate": 0.00010821253913619726,
|
1339 |
+
"loss": 0.8726,
|
1340 |
+
"step": 181
|
1341 |
+
},
|
1342 |
+
{
|
1343 |
+
"epoch": 1.94,
|
1344 |
+
"grad_norm": 0.27201912720918364,
|
1345 |
+
"learning_rate": 0.00010734971331549603,
|
1346 |
+
"loss": 0.891,
|
1347 |
+
"step": 182
|
1348 |
+
},
|
1349 |
+
{
|
1350 |
+
"epoch": 1.95,
|
1351 |
+
"grad_norm": 0.41257277193589503,
|
1352 |
+
"learning_rate": 0.0001064863369987743,
|
1353 |
+
"loss": 0.9188,
|
1354 |
+
"step": 183
|
1355 |
+
},
|
1356 |
+
{
|
1357 |
+
"epoch": 1.96,
|
1358 |
+
"grad_norm": 0.264920112831242,
|
1359 |
+
"learning_rate": 0.00010562247485321115,
|
1360 |
+
"loss": 0.8761,
|
1361 |
+
"step": 184
|
1362 |
+
},
|
1363 |
+
{
|
1364 |
+
"epoch": 1.98,
|
1365 |
+
"grad_norm": 0.28166441056422037,
|
1366 |
+
"learning_rate": 0.00010475819158237425,
|
1367 |
+
"loss": 0.8805,
|
1368 |
+
"step": 185
|
1369 |
+
},
|
1370 |
+
{
|
1371 |
+
"epoch": 1.99,
|
1372 |
+
"grad_norm": 0.2818961139392159,
|
1373 |
+
"learning_rate": 0.00010389355192137377,
|
1374 |
+
"loss": 0.8934,
|
1375 |
+
"step": 186
|
1376 |
+
},
|
1377 |
+
{
|
1378 |
+
"epoch": 2.0,
|
1379 |
+
"grad_norm": 0.27424787600345923,
|
1380 |
+
"learning_rate": 0.00010302862063201367,
|
1381 |
+
"loss": 0.9237,
|
1382 |
+
"step": 187
|
1383 |
+
},
|
1384 |
+
{
|
1385 |
+
"epoch": 2.01,
|
1386 |
+
"grad_norm": 0.25570082666079225,
|
1387 |
+
"learning_rate": 0.00010216346249794087,
|
1388 |
+
"loss": 0.8656,
|
1389 |
+
"step": 188
|
1390 |
+
},
|
1391 |
+
{
|
1392 |
+
"epoch": 2.02,
|
1393 |
+
"grad_norm": 0.2712359904481713,
|
1394 |
+
"learning_rate": 0.0001012981423197931,
|
1395 |
+
"loss": 0.7627,
|
1396 |
+
"step": 189
|
1397 |
+
},
|
1398 |
+
{
|
1399 |
+
"epoch": 2.03,
|
1400 |
+
"grad_norm": 0.25054404547068676,
|
1401 |
+
"learning_rate": 0.00010043272491034523,
|
1402 |
+
"loss": 0.8142,
|
1403 |
+
"step": 190
|
1404 |
+
},
|
1405 |
+
{
|
1406 |
+
"epoch": 2.04,
|
1407 |
+
"grad_norm": 0.28520868420260026,
|
1408 |
+
"learning_rate": 9.956727508965481e-05,
|
1409 |
+
"loss": 0.7953,
|
1410 |
+
"step": 191
|
1411 |
+
},
|
1412 |
+
{
|
1413 |
+
"epoch": 2.05,
|
1414 |
+
"grad_norm": 0.29413880984694873,
|
1415 |
+
"learning_rate": 9.870185768020693e-05,
|
1416 |
+
"loss": 0.8231,
|
1417 |
+
"step": 192
|
1418 |
+
},
|
1419 |
+
{
|
1420 |
+
"epoch": 2.05,
|
1421 |
+
"eval_loss": 1.144862413406372,
|
1422 |
+
"eval_runtime": 119.3004,
|
1423 |
+
"eval_samples_per_second": 8.374,
|
1424 |
+
"eval_steps_per_second": 0.528,
|
1425 |
+
"step": 192
|
1426 |
+
},
|
1427 |
+
{
|
1428 |
+
"epoch": 2.06,
|
1429 |
+
"grad_norm": 0.28378300985247035,
|
1430 |
+
"learning_rate": 9.783653750205915e-05,
|
1431 |
+
"loss": 0.7478,
|
1432 |
+
"step": 193
|
1433 |
+
},
|
1434 |
+
{
|
1435 |
+
"epoch": 2.07,
|
1436 |
+
"grad_norm": 0.31792721348179676,
|
1437 |
+
"learning_rate": 9.697137936798634e-05,
|
1438 |
+
"loss": 0.7961,
|
1439 |
+
"step": 194
|
1440 |
+
},
|
1441 |
+
{
|
1442 |
+
"epoch": 2.08,
|
1443 |
+
"grad_norm": 0.3291666436295964,
|
1444 |
+
"learning_rate": 9.610644807862625e-05,
|
1445 |
+
"loss": 0.7434,
|
1446 |
+
"step": 195
|
1447 |
+
},
|
1448 |
+
{
|
1449 |
+
"epoch": 2.09,
|
1450 |
+
"grad_norm": 0.301579259001567,
|
1451 |
+
"learning_rate": 9.524180841762577e-05,
|
1452 |
+
"loss": 0.7779,
|
1453 |
+
"step": 196
|
1454 |
+
},
|
1455 |
+
{
|
1456 |
+
"epoch": 2.1,
|
1457 |
+
"grad_norm": 0.30252161240414444,
|
1458 |
+
"learning_rate": 9.437752514678887e-05,
|
1459 |
+
"loss": 0.7689,
|
1460 |
+
"step": 197
|
1461 |
+
},
|
1462 |
+
{
|
1463 |
+
"epoch": 2.11,
|
1464 |
+
"grad_norm": 0.3350657085129171,
|
1465 |
+
"learning_rate": 9.35136630012257e-05,
|
1466 |
+
"loss": 0.7574,
|
1467 |
+
"step": 198
|
1468 |
+
},
|
1469 |
+
{
|
1470 |
+
"epoch": 2.12,
|
1471 |
+
"grad_norm": 0.3053109929956358,
|
1472 |
+
"learning_rate": 9.265028668450402e-05,
|
1473 |
+
"loss": 0.7729,
|
1474 |
+
"step": 199
|
1475 |
+
},
|
1476 |
+
{
|
1477 |
+
"epoch": 2.14,
|
1478 |
+
"grad_norm": 0.30367223609567207,
|
1479 |
+
"learning_rate": 9.178746086380275e-05,
|
1480 |
+
"loss": 0.8111,
|
1481 |
+
"step": 200
|
1482 |
+
},
|
1483 |
+
{
|
1484 |
+
"epoch": 2.15,
|
1485 |
+
"grad_norm": 0.3366440949136126,
|
1486 |
+
"learning_rate": 9.092525016506858e-05,
|
1487 |
+
"loss": 0.7986,
|
1488 |
+
"step": 201
|
1489 |
+
},
|
1490 |
+
{
|
1491 |
+
"epoch": 2.16,
|
1492 |
+
"grad_norm": 0.3228036608413652,
|
1493 |
+
"learning_rate": 9.006371916817534e-05,
|
1494 |
+
"loss": 0.8382,
|
1495 |
+
"step": 202
|
1496 |
+
},
|
1497 |
+
{
|
1498 |
+
"epoch": 2.17,
|
1499 |
+
"grad_norm": 0.2919040789403488,
|
1500 |
+
"learning_rate": 8.920293240208694e-05,
|
1501 |
+
"loss": 0.7696,
|
1502 |
+
"step": 203
|
1503 |
+
},
|
1504 |
+
{
|
1505 |
+
"epoch": 2.18,
|
1506 |
+
"grad_norm": 0.30084198177583166,
|
1507 |
+
"learning_rate": 8.83429543400241e-05,
|
1508 |
+
"loss": 0.7671,
|
1509 |
+
"step": 204
|
1510 |
+
},
|
1511 |
+
{
|
1512 |
+
"epoch": 2.19,
|
1513 |
+
"grad_norm": 0.33931609000743107,
|
1514 |
+
"learning_rate": 8.748384939463543e-05,
|
1515 |
+
"loss": 0.7553,
|
1516 |
+
"step": 205
|
1517 |
+
},
|
1518 |
+
{
|
1519 |
+
"epoch": 2.2,
|
1520 |
+
"grad_norm": 0.30413284924824485,
|
1521 |
+
"learning_rate": 8.662568191317273e-05,
|
1522 |
+
"loss": 0.7324,
|
1523 |
+
"step": 206
|
1524 |
+
},
|
1525 |
+
{
|
1526 |
+
"epoch": 2.21,
|
1527 |
+
"grad_norm": 0.3014038998090481,
|
1528 |
+
"learning_rate": 8.57685161726715e-05,
|
1529 |
+
"loss": 0.7567,
|
1530 |
+
"step": 207
|
1531 |
+
},
|
1532 |
+
{
|
1533 |
+
"epoch": 2.22,
|
1534 |
+
"grad_norm": 0.3176466329519527,
|
1535 |
+
"learning_rate": 8.491241637513644e-05,
|
1536 |
+
"loss": 0.8222,
|
1537 |
+
"step": 208
|
1538 |
+
},
|
1539 |
+
{
|
1540 |
+
"epoch": 2.23,
|
1541 |
+
"grad_norm": 0.29981213041628285,
|
1542 |
+
"learning_rate": 8.405744664273278e-05,
|
1543 |
+
"loss": 0.7077,
|
1544 |
+
"step": 209
|
1545 |
+
},
|
1546 |
+
{
|
1547 |
+
"epoch": 2.24,
|
1548 |
+
"grad_norm": 0.2937916452228122,
|
1549 |
+
"learning_rate": 8.320367101298351e-05,
|
1550 |
+
"loss": 0.7231,
|
1551 |
+
"step": 210
|
1552 |
+
},
|
1553 |
+
{
|
1554 |
+
"epoch": 2.25,
|
1555 |
+
"grad_norm": 0.32040684171320816,
|
1556 |
+
"learning_rate": 8.235115343397295e-05,
|
1557 |
+
"loss": 0.7556,
|
1558 |
+
"step": 211
|
1559 |
+
},
|
1560 |
+
{
|
1561 |
+
"epoch": 2.26,
|
1562 |
+
"grad_norm": 0.31083028085316033,
|
1563 |
+
"learning_rate": 8.149995775955686e-05,
|
1564 |
+
"loss": 0.7514,
|
1565 |
+
"step": 212
|
1566 |
+
},
|
1567 |
+
{
|
1568 |
+
"epoch": 2.27,
|
1569 |
+
"grad_norm": 0.3215465383581194,
|
1570 |
+
"learning_rate": 8.065014774458003e-05,
|
1571 |
+
"loss": 0.7933,
|
1572 |
+
"step": 213
|
1573 |
+
},
|
1574 |
+
{
|
1575 |
+
"epoch": 2.28,
|
1576 |
+
"grad_norm": 0.3081200259196015,
|
1577 |
+
"learning_rate": 7.980178704010089e-05,
|
1578 |
+
"loss": 0.8062,
|
1579 |
+
"step": 214
|
1580 |
+
},
|
1581 |
+
{
|
1582 |
+
"epoch": 2.3,
|
1583 |
+
"grad_norm": 0.3333248296288759,
|
1584 |
+
"learning_rate": 7.895493918862396e-05,
|
1585 |
+
"loss": 0.7784,
|
1586 |
+
"step": 215
|
1587 |
+
},
|
1588 |
+
{
|
1589 |
+
"epoch": 2.31,
|
1590 |
+
"grad_norm": 0.3301326097292383,
|
1591 |
+
"learning_rate": 7.810966761934053e-05,
|
1592 |
+
"loss": 0.8154,
|
1593 |
+
"step": 216
|
1594 |
+
},
|
1595 |
+
{
|
1596 |
+
"epoch": 2.31,
|
1597 |
+
"eval_loss": 1.1513652801513672,
|
1598 |
+
"eval_runtime": 119.4371,
|
1599 |
+
"eval_samples_per_second": 8.364,
|
1600 |
+
"eval_steps_per_second": 0.527,
|
1601 |
+
"step": 216
|
1602 |
+
},
|
1603 |
+
{
|
1604 |
+
"epoch": 2.32,
|
1605 |
+
"grad_norm": 0.3166760836422428,
|
1606 |
+
"learning_rate": 7.726603564337791e-05,
|
1607 |
+
"loss": 0.7486,
|
1608 |
+
"step": 217
|
1609 |
+
},
|
1610 |
+
{
|
1611 |
+
"epoch": 2.33,
|
1612 |
+
"grad_norm": 0.31309757318131876,
|
1613 |
+
"learning_rate": 7.642410644905726e-05,
|
1614 |
+
"loss": 0.771,
|
1615 |
+
"step": 218
|
1616 |
+
},
|
1617 |
+
{
|
1618 |
+
"epoch": 2.34,
|
1619 |
+
"grad_norm": 0.36968796131043985,
|
1620 |
+
"learning_rate": 7.558394309716088e-05,
|
1621 |
+
"loss": 0.8051,
|
1622 |
+
"step": 219
|
1623 |
+
},
|
1624 |
+
{
|
1625 |
+
"epoch": 2.35,
|
1626 |
+
"grad_norm": 0.27537675917328025,
|
1627 |
+
"learning_rate": 7.474560851620873e-05,
|
1628 |
+
"loss": 0.7536,
|
1629 |
+
"step": 220
|
1630 |
+
},
|
1631 |
+
{
|
1632 |
+
"epoch": 2.36,
|
1633 |
+
"grad_norm": 0.2878011945022053,
|
1634 |
+
"learning_rate": 7.390916549774536e-05,
|
1635 |
+
"loss": 0.8126,
|
1636 |
+
"step": 221
|
1637 |
+
},
|
1638 |
+
{
|
1639 |
+
"epoch": 2.37,
|
1640 |
+
"grad_norm": 0.3172405217395398,
|
1641 |
+
"learning_rate": 7.307467669163655e-05,
|
1642 |
+
"loss": 0.8156,
|
1643 |
+
"step": 222
|
1644 |
+
},
|
1645 |
+
{
|
1646 |
+
"epoch": 2.38,
|
1647 |
+
"grad_norm": 0.3183651086957915,
|
1648 |
+
"learning_rate": 7.224220460137701e-05,
|
1649 |
+
"loss": 0.7821,
|
1650 |
+
"step": 223
|
1651 |
+
},
|
1652 |
+
{
|
1653 |
+
"epoch": 2.39,
|
1654 |
+
"grad_norm": 0.3318078467573977,
|
1655 |
+
"learning_rate": 7.141181157940859e-05,
|
1656 |
+
"loss": 0.7993,
|
1657 |
+
"step": 224
|
1658 |
+
},
|
1659 |
+
{
|
1660 |
+
"epoch": 2.4,
|
1661 |
+
"grad_norm": 0.28446170407344085,
|
1662 |
+
"learning_rate": 7.058355982245037e-05,
|
1663 |
+
"loss": 0.7987,
|
1664 |
+
"step": 225
|
1665 |
+
},
|
1666 |
+
{
|
1667 |
+
"epoch": 2.41,
|
1668 |
+
"grad_norm": 0.33568352702219995,
|
1669 |
+
"learning_rate": 6.97575113668399e-05,
|
1670 |
+
"loss": 0.773,
|
1671 |
+
"step": 226
|
1672 |
+
},
|
1673 |
+
{
|
1674 |
+
"epoch": 2.42,
|
1675 |
+
"grad_norm": 0.30820575901544944,
|
1676 |
+
"learning_rate": 6.893372808388675e-05,
|
1677 |
+
"loss": 0.813,
|
1678 |
+
"step": 227
|
1679 |
+
},
|
1680 |
+
{
|
1681 |
+
"epoch": 2.43,
|
1682 |
+
"grad_norm": 0.3121364386024255,
|
1683 |
+
"learning_rate": 6.811227167523815e-05,
|
1684 |
+
"loss": 0.7716,
|
1685 |
+
"step": 228
|
1686 |
+
},
|
1687 |
+
{
|
1688 |
+
"epoch": 2.44,
|
1689 |
+
"grad_norm": 0.3211455560922844,
|
1690 |
+
"learning_rate": 6.729320366825784e-05,
|
1691 |
+
"loss": 0.7577,
|
1692 |
+
"step": 229
|
1693 |
+
},
|
1694 |
+
{
|
1695 |
+
"epoch": 2.46,
|
1696 |
+
"grad_norm": 0.3315601260165869,
|
1697 |
+
"learning_rate": 6.647658541141735e-05,
|
1698 |
+
"loss": 0.779,
|
1699 |
+
"step": 230
|
1700 |
+
},
|
1701 |
+
{
|
1702 |
+
"epoch": 2.47,
|
1703 |
+
"grad_norm": 0.35482236759964675,
|
1704 |
+
"learning_rate": 6.566247806970119e-05,
|
1705 |
+
"loss": 0.7936,
|
1706 |
+
"step": 231
|
1707 |
+
},
|
1708 |
+
{
|
1709 |
+
"epoch": 2.48,
|
1710 |
+
"grad_norm": 0.3318703205331905,
|
1711 |
+
"learning_rate": 6.485094262002529e-05,
|
1712 |
+
"loss": 0.7721,
|
1713 |
+
"step": 232
|
1714 |
+
},
|
1715 |
+
{
|
1716 |
+
"epoch": 2.49,
|
1717 |
+
"grad_norm": 0.313412585518615,
|
1718 |
+
"learning_rate": 6.404203984667019e-05,
|
1719 |
+
"loss": 0.7333,
|
1720 |
+
"step": 233
|
1721 |
+
},
|
1722 |
+
{
|
1723 |
+
"epoch": 2.5,
|
1724 |
+
"grad_norm": 0.3389693444254627,
|
1725 |
+
"learning_rate": 6.323583033672799e-05,
|
1726 |
+
"loss": 0.6991,
|
1727 |
+
"step": 234
|
1728 |
+
},
|
1729 |
+
{
|
1730 |
+
"epoch": 2.51,
|
1731 |
+
"grad_norm": 0.33056782619334757,
|
1732 |
+
"learning_rate": 6.243237447556449e-05,
|
1733 |
+
"loss": 0.7872,
|
1734 |
+
"step": 235
|
1735 |
+
},
|
1736 |
+
{
|
1737 |
+
"epoch": 2.52,
|
1738 |
+
"grad_norm": 0.3064085209522584,
|
1739 |
+
"learning_rate": 6.163173244229619e-05,
|
1740 |
+
"loss": 0.7713,
|
1741 |
+
"step": 236
|
1742 |
+
},
|
1743 |
+
{
|
1744 |
+
"epoch": 2.53,
|
1745 |
+
"grad_norm": 0.3109445125421656,
|
1746 |
+
"learning_rate": 6.083396420528298e-05,
|
1747 |
+
"loss": 0.8228,
|
1748 |
+
"step": 237
|
1749 |
+
},
|
1750 |
+
{
|
1751 |
+
"epoch": 2.54,
|
1752 |
+
"grad_norm": 0.35767207742703394,
|
1753 |
+
"learning_rate": 6.0039129517636435e-05,
|
1754 |
+
"loss": 0.8167,
|
1755 |
+
"step": 238
|
1756 |
+
},
|
1757 |
+
{
|
1758 |
+
"epoch": 2.55,
|
1759 |
+
"grad_norm": 0.32869196909020376,
|
1760 |
+
"learning_rate": 5.924728791274432e-05,
|
1761 |
+
"loss": 0.7893,
|
1762 |
+
"step": 239
|
1763 |
+
},
|
1764 |
+
{
|
1765 |
+
"epoch": 2.56,
|
1766 |
+
"grad_norm": 0.31178216743238674,
|
1767 |
+
"learning_rate": 5.845849869981137e-05,
|
1768 |
+
"loss": 0.7354,
|
1769 |
+
"step": 240
|
1770 |
+
},
|
1771 |
+
{
|
1772 |
+
"epoch": 2.56,
|
1773 |
+
"eval_loss": 1.1470853090286255,
|
1774 |
+
"eval_runtime": 119.0749,
|
1775 |
+
"eval_samples_per_second": 8.39,
|
1776 |
+
"eval_steps_per_second": 0.529,
|
1777 |
+
"step": 240
|
1778 |
+
},
|
1779 |
+
{
|
1780 |
+
"epoch": 2.57,
|
1781 |
+
"grad_norm": 0.3146586486940167,
|
1782 |
+
"learning_rate": 5.7672820959417254e-05,
|
1783 |
+
"loss": 0.785,
|
1784 |
+
"step": 241
|
1785 |
+
},
|
1786 |
+
{
|
1787 |
+
"epoch": 2.58,
|
1788 |
+
"grad_norm": 0.3309473634570162,
|
1789 |
+
"learning_rate": 5.68903135390912e-05,
|
1790 |
+
"loss": 0.7007,
|
1791 |
+
"step": 242
|
1792 |
+
},
|
1793 |
+
{
|
1794 |
+
"epoch": 2.59,
|
1795 |
+
"grad_norm": 0.2927704203363025,
|
1796 |
+
"learning_rate": 5.611103504890444e-05,
|
1797 |
+
"loss": 0.778,
|
1798 |
+
"step": 243
|
1799 |
+
},
|
1800 |
+
{
|
1801 |
+
"epoch": 2.6,
|
1802 |
+
"grad_norm": 0.31346541530480915,
|
1803 |
+
"learning_rate": 5.533504385708024e-05,
|
1804 |
+
"loss": 0.7272,
|
1805 |
+
"step": 244
|
1806 |
+
},
|
1807 |
+
{
|
1808 |
+
"epoch": 2.62,
|
1809 |
+
"grad_norm": 0.2996345434845278,
|
1810 |
+
"learning_rate": 5.456239808562209e-05,
|
1811 |
+
"loss": 0.8091,
|
1812 |
+
"step": 245
|
1813 |
+
},
|
1814 |
+
{
|
1815 |
+
"epoch": 2.63,
|
1816 |
+
"grad_norm": 0.29407937930772826,
|
1817 |
+
"learning_rate": 5.379315560596038e-05,
|
1818 |
+
"loss": 0.7666,
|
1819 |
+
"step": 246
|
1820 |
+
},
|
1821 |
+
{
|
1822 |
+
"epoch": 2.64,
|
1823 |
+
"grad_norm": 0.30530254935425627,
|
1824 |
+
"learning_rate": 5.3027374034617785e-05,
|
1825 |
+
"loss": 0.7982,
|
1826 |
+
"step": 247
|
1827 |
+
},
|
1828 |
+
{
|
1829 |
+
"epoch": 2.65,
|
1830 |
+
"grad_norm": 0.3298149075133802,
|
1831 |
+
"learning_rate": 5.226511072889371e-05,
|
1832 |
+
"loss": 0.7962,
|
1833 |
+
"step": 248
|
1834 |
+
},
|
1835 |
+
{
|
1836 |
+
"epoch": 2.66,
|
1837 |
+
"grad_norm": 0.33155001378615223,
|
1838 |
+
"learning_rate": 5.1506422782568345e-05,
|
1839 |
+
"loss": 0.8087,
|
1840 |
+
"step": 249
|
1841 |
+
},
|
1842 |
+
{
|
1843 |
+
"epoch": 2.67,
|
1844 |
+
"grad_norm": 0.32891369446509405,
|
1845 |
+
"learning_rate": 5.0751367021626215e-05,
|
1846 |
+
"loss": 0.7702,
|
1847 |
+
"step": 250
|
1848 |
+
},
|
1849 |
+
{
|
1850 |
+
"epoch": 2.68,
|
1851 |
+
"grad_norm": 0.3042328939887202,
|
1852 |
+
"learning_rate": 5.000000000000002e-05,
|
1853 |
+
"loss": 0.7924,
|
1854 |
+
"step": 251
|
1855 |
+
},
|
1856 |
+
{
|
1857 |
+
"epoch": 2.69,
|
1858 |
+
"grad_norm": 0.3037799376581133,
|
1859 |
+
"learning_rate": 4.9252377995334444e-05,
|
1860 |
+
"loss": 0.7852,
|
1861 |
+
"step": 252
|
1862 |
+
},
|
1863 |
+
{
|
1864 |
+
"epoch": 2.7,
|
1865 |
+
"grad_norm": 0.3435430445603929,
|
1866 |
+
"learning_rate": 4.85085570047713e-05,
|
1867 |
+
"loss": 0.7501,
|
1868 |
+
"step": 253
|
1869 |
+
},
|
1870 |
+
{
|
1871 |
+
"epoch": 2.71,
|
1872 |
+
"grad_norm": 0.3072160193979946,
|
1873 |
+
"learning_rate": 4.776859274075506e-05,
|
1874 |
+
"loss": 0.7462,
|
1875 |
+
"step": 254
|
1876 |
+
},
|
1877 |
+
{
|
1878 |
+
"epoch": 2.72,
|
1879 |
+
"grad_norm": 0.3223586439500028,
|
1880 |
+
"learning_rate": 4.703254062686017e-05,
|
1881 |
+
"loss": 0.775,
|
1882 |
+
"step": 255
|
1883 |
+
},
|
1884 |
+
{
|
1885 |
+
"epoch": 2.73,
|
1886 |
+
"grad_norm": 0.3270406403084203,
|
1887 |
+
"learning_rate": 4.630045579363957e-05,
|
1888 |
+
"loss": 0.8306,
|
1889 |
+
"step": 256
|
1890 |
+
},
|
1891 |
+
{
|
1892 |
+
"epoch": 2.74,
|
1893 |
+
"grad_norm": 0.3360192842512657,
|
1894 |
+
"learning_rate": 4.557239307449561e-05,
|
1895 |
+
"loss": 0.7697,
|
1896 |
+
"step": 257
|
1897 |
+
},
|
1898 |
+
{
|
1899 |
+
"epoch": 2.75,
|
1900 |
+
"grad_norm": 0.34282816479900324,
|
1901 |
+
"learning_rate": 4.484840700157295e-05,
|
1902 |
+
"loss": 0.7654,
|
1903 |
+
"step": 258
|
1904 |
+
},
|
1905 |
+
{
|
1906 |
+
"epoch": 2.77,
|
1907 |
+
"grad_norm": 0.30039142762313786,
|
1908 |
+
"learning_rate": 4.412855180167406e-05,
|
1909 |
+
"loss": 0.7703,
|
1910 |
+
"step": 259
|
1911 |
+
},
|
1912 |
+
{
|
1913 |
+
"epoch": 2.78,
|
1914 |
+
"grad_norm": 0.34307884673711425,
|
1915 |
+
"learning_rate": 4.3412881392197526e-05,
|
1916 |
+
"loss": 0.7993,
|
1917 |
+
"step": 260
|
1918 |
+
},
|
1919 |
+
{
|
1920 |
+
"epoch": 2.79,
|
1921 |
+
"grad_norm": 0.33685538845268104,
|
1922 |
+
"learning_rate": 4.270144937709981e-05,
|
1923 |
+
"loss": 0.7866,
|
1924 |
+
"step": 261
|
1925 |
+
},
|
1926 |
+
{
|
1927 |
+
"epoch": 2.8,
|
1928 |
+
"grad_norm": 0.33166767859224683,
|
1929 |
+
"learning_rate": 4.19943090428802e-05,
|
1930 |
+
"loss": 0.8083,
|
1931 |
+
"step": 262
|
1932 |
+
},
|
1933 |
+
{
|
1934 |
+
"epoch": 2.81,
|
1935 |
+
"grad_norm": 0.3086370003245581,
|
1936 |
+
"learning_rate": 4.129151335458957e-05,
|
1937 |
+
"loss": 0.7938,
|
1938 |
+
"step": 263
|
1939 |
+
},
|
1940 |
+
{
|
1941 |
+
"epoch": 2.82,
|
1942 |
+
"grad_norm": 0.3715649674817313,
|
1943 |
+
"learning_rate": 4.059311495186338e-05,
|
1944 |
+
"loss": 0.7577,
|
1945 |
+
"step": 264
|
1946 |
+
},
|
1947 |
+
{
|
1948 |
+
"epoch": 2.82,
|
1949 |
+
"eval_loss": 1.1478512287139893,
|
1950 |
+
"eval_runtime": 119.1178,
|
1951 |
+
"eval_samples_per_second": 8.387,
|
1952 |
+
"eval_steps_per_second": 0.529,
|
1953 |
+
"step": 264
|
1954 |
+
},
|
1955 |
+
{
|
1956 |
+
"epoch": 2.83,
|
1957 |
+
"grad_norm": 0.3298033298390841,
|
1958 |
+
"learning_rate": 3.9899166144978904e-05,
|
1959 |
+
"loss": 0.8296,
|
1960 |
+
"step": 265
|
1961 |
+
},
|
1962 |
+
{
|
1963 |
+
"epoch": 2.84,
|
1964 |
+
"grad_norm": 0.3294808666769515,
|
1965 |
+
"learning_rate": 3.920971891093718e-05,
|
1966 |
+
"loss": 0.8206,
|
1967 |
+
"step": 266
|
1968 |
+
},
|
1969 |
+
{
|
1970 |
+
"epoch": 2.85,
|
1971 |
+
"grad_norm": 0.3239672501165848,
|
1972 |
+
"learning_rate": 3.852482488956992e-05,
|
1973 |
+
"loss": 0.8116,
|
1974 |
+
"step": 267
|
1975 |
+
},
|
1976 |
+
{
|
1977 |
+
"epoch": 2.86,
|
1978 |
+
"grad_norm": 0.3286742994048133,
|
1979 |
+
"learning_rate": 3.784453537967161e-05,
|
1980 |
+
"loss": 0.8096,
|
1981 |
+
"step": 268
|
1982 |
+
},
|
1983 |
+
{
|
1984 |
+
"epoch": 2.87,
|
1985 |
+
"grad_norm": 0.31259050250842946,
|
1986 |
+
"learning_rate": 3.7168901335157315e-05,
|
1987 |
+
"loss": 0.7669,
|
1988 |
+
"step": 269
|
1989 |
+
},
|
1990 |
+
{
|
1991 |
+
"epoch": 2.88,
|
1992 |
+
"grad_norm": 0.3308991711135206,
|
1993 |
+
"learning_rate": 3.649797336124615e-05,
|
1994 |
+
"loss": 0.8041,
|
1995 |
+
"step": 270
|
1996 |
+
},
|
1997 |
+
{
|
1998 |
+
"epoch": 2.89,
|
1999 |
+
"grad_norm": 0.32757727002633424,
|
2000 |
+
"learning_rate": 3.583180171067101e-05,
|
2001 |
+
"loss": 0.7673,
|
2002 |
+
"step": 271
|
2003 |
+
},
|
2004 |
+
{
|
2005 |
+
"epoch": 2.9,
|
2006 |
+
"grad_norm": 0.3342551756453125,
|
2007 |
+
"learning_rate": 3.517043627991441e-05,
|
2008 |
+
"loss": 0.8005,
|
2009 |
+
"step": 272
|
2010 |
+
},
|
2011 |
+
{
|
2012 |
+
"epoch": 2.91,
|
2013 |
+
"grad_norm": 0.31643754309861705,
|
2014 |
+
"learning_rate": 3.45139266054715e-05,
|
2015 |
+
"loss": 0.787,
|
2016 |
+
"step": 273
|
2017 |
+
},
|
2018 |
+
{
|
2019 |
+
"epoch": 2.93,
|
2020 |
+
"grad_norm": 0.3140452683879005,
|
2021 |
+
"learning_rate": 3.3862321860139576e-05,
|
2022 |
+
"loss": 0.7888,
|
2023 |
+
"step": 274
|
2024 |
+
},
|
2025 |
+
{
|
2026 |
+
"epoch": 2.94,
|
2027 |
+
"grad_norm": 0.30706221155036223,
|
2028 |
+
"learning_rate": 3.3215670849335155e-05,
|
2029 |
+
"loss": 0.827,
|
2030 |
+
"step": 275
|
2031 |
+
},
|
2032 |
+
{
|
2033 |
+
"epoch": 2.95,
|
2034 |
+
"grad_norm": 0.3185483102727301,
|
2035 |
+
"learning_rate": 3.257402200743821e-05,
|
2036 |
+
"loss": 0.7779,
|
2037 |
+
"step": 276
|
2038 |
+
},
|
2039 |
+
{
|
2040 |
+
"epoch": 2.96,
|
2041 |
+
"grad_norm": 0.3032818796307545,
|
2042 |
+
"learning_rate": 3.19374233941647e-05,
|
2043 |
+
"loss": 0.7993,
|
2044 |
+
"step": 277
|
2045 |
+
},
|
2046 |
+
{
|
2047 |
+
"epoch": 2.97,
|
2048 |
+
"grad_norm": 0.3057758504695884,
|
2049 |
+
"learning_rate": 3.130592269096671e-05,
|
2050 |
+
"loss": 0.768,
|
2051 |
+
"step": 278
|
2052 |
+
},
|
2053 |
+
{
|
2054 |
+
"epoch": 2.98,
|
2055 |
+
"grad_norm": 0.3245404038219604,
|
2056 |
+
"learning_rate": 3.0679567197461134e-05,
|
2057 |
+
"loss": 0.7706,
|
2058 |
+
"step": 279
|
2059 |
+
}
|
2060 |
+
],
|
2061 |
+
"logging_steps": 1,
|
2062 |
+
"max_steps": 372,
|
2063 |
+
"num_input_tokens_seen": 0,
|
2064 |
+
"num_train_epochs": 4,
|
2065 |
+
"save_steps": 93,
|
2066 |
+
"total_flos": 5.168039211319689e+18,
|
2067 |
+
"train_batch_size": 4,
|
2068 |
+
"trial_name": null,
|
2069 |
+
"trial_params": null
|
2070 |
+
}
|
checkpoint-279/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c56515a18cd914d4eee44c09952d3a756ea623b0b6e69e8dfaeb0dbc7b665f46
|
3 |
+
size 6776
|
checkpoint-279/zero_to_fp32.py
ADDED
@@ -0,0 +1,592 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _has_callable(obj, fn):
|
252 |
+
attr = getattr(obj, fn, None)
|
253 |
+
return callable(attr)
|
254 |
+
|
255 |
+
|
256 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
257 |
+
param_shapes = zero_model_states[0].param_shapes
|
258 |
+
|
259 |
+
# Reconstruction protocol:
|
260 |
+
#
|
261 |
+
# XXX: document this
|
262 |
+
|
263 |
+
if debug:
|
264 |
+
for i in range(world_size):
|
265 |
+
for j in range(len(fp32_flat_groups[0])):
|
266 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
267 |
+
|
268 |
+
# XXX: memory usage doubles here (zero2)
|
269 |
+
num_param_groups = len(fp32_flat_groups[0])
|
270 |
+
merged_single_partition_of_fp32_groups = []
|
271 |
+
for i in range(num_param_groups):
|
272 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
273 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
274 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
275 |
+
avail_numel = sum(
|
276 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
277 |
+
|
278 |
+
if debug:
|
279 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
280 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
281 |
+
# not asserting if there is a mismatch due to possible padding
|
282 |
+
print(f"Have {avail_numel} numels to process.")
|
283 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
284 |
+
|
285 |
+
# params
|
286 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
287 |
+
# out-of-core computing solution
|
288 |
+
total_numel = 0
|
289 |
+
total_params = 0
|
290 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
291 |
+
offset = 0
|
292 |
+
avail_numel = full_single_fp32_vector.numel()
|
293 |
+
for name, shape in shapes.items():
|
294 |
+
|
295 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
296 |
+
total_numel += unpartitioned_numel
|
297 |
+
total_params += 1
|
298 |
+
|
299 |
+
if debug:
|
300 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
301 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
302 |
+
offset += unpartitioned_numel
|
303 |
+
|
304 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
305 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
306 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
307 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
308 |
+
align_to = 2 * world_size
|
309 |
+
|
310 |
+
def zero2_align(x):
|
311 |
+
return align_to * math.ceil(x / align_to)
|
312 |
+
|
313 |
+
if debug:
|
314 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
315 |
+
|
316 |
+
offset = zero2_align(offset)
|
317 |
+
avail_numel = zero2_align(avail_numel)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
# Sanity check
|
323 |
+
if offset != avail_numel:
|
324 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
325 |
+
|
326 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
327 |
+
|
328 |
+
|
329 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
330 |
+
state_dict = OrderedDict()
|
331 |
+
|
332 |
+
# buffers
|
333 |
+
buffers = zero_model_states[0].buffers
|
334 |
+
state_dict.update(buffers)
|
335 |
+
if debug:
|
336 |
+
print(f"added {len(buffers)} buffers")
|
337 |
+
|
338 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
339 |
+
|
340 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
341 |
+
|
342 |
+
# recover shared parameters
|
343 |
+
for pair in zero_model_states[0].shared_params:
|
344 |
+
if pair[1] in state_dict:
|
345 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
346 |
+
|
347 |
+
return state_dict
|
348 |
+
|
349 |
+
|
350 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
351 |
+
remainder = unpartitioned_numel % world_size
|
352 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
353 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
354 |
+
return partitioned_numel, padding_numel
|
355 |
+
|
356 |
+
|
357 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
358 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
359 |
+
return
|
360 |
+
|
361 |
+
if debug:
|
362 |
+
for i in range(world_size):
|
363 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
364 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
365 |
+
|
366 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
367 |
+
wanted_params = len(frozen_param_shapes)
|
368 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
369 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
370 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
371 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
372 |
+
|
373 |
+
total_params = 0
|
374 |
+
total_numel = 0
|
375 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
376 |
+
total_params += 1
|
377 |
+
unpartitioned_numel = shape.numel()
|
378 |
+
total_numel += unpartitioned_numel
|
379 |
+
|
380 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
381 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
382 |
+
|
383 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
384 |
+
|
385 |
+
if debug:
|
386 |
+
print(
|
387 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
388 |
+
)
|
389 |
+
|
390 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
391 |
+
|
392 |
+
|
393 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
394 |
+
param_shapes = zero_model_states[0].param_shapes
|
395 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
396 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
397 |
+
# param, re-consolidating each param, while dealing with padding if any
|
398 |
+
|
399 |
+
# merge list of dicts, preserving order
|
400 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
401 |
+
|
402 |
+
if debug:
|
403 |
+
for i in range(world_size):
|
404 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
405 |
+
|
406 |
+
wanted_params = len(param_shapes)
|
407 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
408 |
+
# not asserting if there is a mismatch due to possible padding
|
409 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
410 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
411 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
412 |
+
|
413 |
+
# params
|
414 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
415 |
+
# out-of-core computing solution
|
416 |
+
offset = 0
|
417 |
+
total_numel = 0
|
418 |
+
total_params = 0
|
419 |
+
for name, shape in param_shapes.items():
|
420 |
+
|
421 |
+
unpartitioned_numel = shape.numel()
|
422 |
+
total_numel += unpartitioned_numel
|
423 |
+
total_params += 1
|
424 |
+
|
425 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
426 |
+
|
427 |
+
if debug:
|
428 |
+
print(
|
429 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
430 |
+
)
|
431 |
+
|
432 |
+
# XXX: memory usage doubles here
|
433 |
+
state_dict[name] = torch.cat(
|
434 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
435 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
436 |
+
offset += partitioned_numel
|
437 |
+
|
438 |
+
offset *= world_size
|
439 |
+
|
440 |
+
# Sanity check
|
441 |
+
if offset != avail_numel:
|
442 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
443 |
+
|
444 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
445 |
+
|
446 |
+
|
447 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
448 |
+
state_dict = OrderedDict()
|
449 |
+
|
450 |
+
# buffers
|
451 |
+
buffers = zero_model_states[0].buffers
|
452 |
+
state_dict.update(buffers)
|
453 |
+
if debug:
|
454 |
+
print(f"added {len(buffers)} buffers")
|
455 |
+
|
456 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
457 |
+
|
458 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
459 |
+
|
460 |
+
# recover shared parameters
|
461 |
+
for pair in zero_model_states[0].shared_params:
|
462 |
+
if pair[1] in state_dict:
|
463 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
464 |
+
|
465 |
+
return state_dict
|
466 |
+
|
467 |
+
|
468 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
469 |
+
"""
|
470 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
471 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
472 |
+
via a model hub.
|
473 |
+
|
474 |
+
Args:
|
475 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
476 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
477 |
+
|
478 |
+
Returns:
|
479 |
+
- pytorch ``state_dict``
|
480 |
+
|
481 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
482 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
483 |
+
the checkpoint.
|
484 |
+
|
485 |
+
A typical usage might be ::
|
486 |
+
|
487 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
488 |
+
# do the training and checkpoint saving
|
489 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
490 |
+
model = model.cpu() # move to cpu
|
491 |
+
model.load_state_dict(state_dict)
|
492 |
+
# submit to model hub or save the model to share with others
|
493 |
+
|
494 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
495 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
496 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
497 |
+
|
498 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
499 |
+
|
500 |
+
"""
|
501 |
+
if tag is None:
|
502 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
503 |
+
if os.path.isfile(latest_path):
|
504 |
+
with open(latest_path, 'r') as fd:
|
505 |
+
tag = fd.read().strip()
|
506 |
+
else:
|
507 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
508 |
+
|
509 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
510 |
+
|
511 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
512 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
513 |
+
|
514 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
515 |
+
|
516 |
+
|
517 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
518 |
+
"""
|
519 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
520 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
521 |
+
|
522 |
+
Args:
|
523 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
524 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
525 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
526 |
+
"""
|
527 |
+
|
528 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
529 |
+
print(f"Saving fp32 state dict to {output_file}")
|
530 |
+
torch.save(state_dict, output_file)
|
531 |
+
|
532 |
+
|
533 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
534 |
+
"""
|
535 |
+
1. Put the provided model to cpu
|
536 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
537 |
+
3. Load it into the provided model
|
538 |
+
|
539 |
+
Args:
|
540 |
+
- ``model``: the model object to update
|
541 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
542 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
543 |
+
|
544 |
+
Returns:
|
545 |
+
- ``model`: modified model
|
546 |
+
|
547 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
548 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
549 |
+
conveniently placed for you in the checkpoint folder.
|
550 |
+
|
551 |
+
A typical usage might be ::
|
552 |
+
|
553 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
554 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
555 |
+
# submit to model hub or save the model to share with others
|
556 |
+
|
557 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
558 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
559 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
560 |
+
|
561 |
+
"""
|
562 |
+
logger.info(f"Extracting fp32 weights")
|
563 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
564 |
+
|
565 |
+
logger.info(f"Overwriting model with fp32 weights")
|
566 |
+
model = model.cpu()
|
567 |
+
model.load_state_dict(state_dict, strict=False)
|
568 |
+
|
569 |
+
return model
|
570 |
+
|
571 |
+
|
572 |
+
if __name__ == "__main__":
|
573 |
+
|
574 |
+
parser = argparse.ArgumentParser()
|
575 |
+
parser.add_argument("checkpoint_dir",
|
576 |
+
type=str,
|
577 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
578 |
+
parser.add_argument(
|
579 |
+
"output_file",
|
580 |
+
type=str,
|
581 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
582 |
+
parser.add_argument("-t",
|
583 |
+
"--tag",
|
584 |
+
type=str,
|
585 |
+
default=None,
|
586 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
587 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
588 |
+
args = parser.parse_args()
|
589 |
+
|
590 |
+
debug = args.debug
|
591 |
+
|
592 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|
checkpoint-336/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: google/gemma-2b
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.9.0
|
checkpoint-336/adapter_config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "google/gemma-2b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": null,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"loftq_config": {},
|
12 |
+
"lora_alpha": 16,
|
13 |
+
"lora_dropout": 0.05,
|
14 |
+
"megatron_config": null,
|
15 |
+
"megatron_core": "megatron.core",
|
16 |
+
"modules_to_save": null,
|
17 |
+
"peft_type": "LORA",
|
18 |
+
"r": 32,
|
19 |
+
"rank_pattern": {},
|
20 |
+
"revision": null,
|
21 |
+
"target_modules": [
|
22 |
+
"up_proj",
|
23 |
+
"q_proj",
|
24 |
+
"v_proj",
|
25 |
+
"down_proj",
|
26 |
+
"gate_proj",
|
27 |
+
"k_proj",
|
28 |
+
"o_proj"
|
29 |
+
],
|
30 |
+
"task_type": "CAUSAL_LM",
|
31 |
+
"use_dora": false,
|
32 |
+
"use_rslora": false
|
33 |
+
}
|
checkpoint-336/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ce5c9479f7b4e2f4f1c71ed29d0ec95f79e1731de4be9d3f7759abe3043fcdc
|
3 |
+
size 78480320
|
checkpoint-336/global_step336/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5f204930ec4f2a105b656f8596b32abc5228db4def6b1aa8c6f63fe8c492820e
|
3 |
+
size 58886928
|
checkpoint-336/global_step336/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd427c55f17c0510ec2ed53fe5e319eb0a2c4761d4083df28d11ba7aa84e5a15
|
3 |
+
size 58885968
|
checkpoint-336/global_step336/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6271e5b9edc1d160ad0326ac1a89d8d44ef09363904f40271525aff81aa3b01d
|
3 |
+
size 58886992
|
checkpoint-336/global_step336/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5abf7c61e69335a8e881c7220e7017eb5372fdf817a3b0d26486e4faab795701
|
3 |
+
size 58886032
|
checkpoint-336/global_step336/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8dbda4b13cb1e71570782ac3ce184727dbacb34070d7b08deeb937890375555c
|
3 |
+
size 1159049922
|
checkpoint-336/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step336
|
checkpoint-336/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:28b9cac536dcc2f0fcb0db1a7ed44d898a5e257f0e6a2dde4782893acb56ce7d
|
3 |
+
size 15024
|
checkpoint-336/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d3ee31ce56c4f2248ab7aaf5beaf8d895447d28644df750b83cc2177262498de
|
3 |
+
size 15024
|
checkpoint-336/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a615e7b3e06287a0e82a15b753b1c48c658347992fbb7d59ee5836d824655ebd
|
3 |
+
size 15024
|
checkpoint-336/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe5c5388f4cf688aa51717160bed97071e825a07ba7d9a22897241c258de91d9
|
3 |
+
size 15024
|
checkpoint-336/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:033700c231840b794630147afe6dca04265ec61bb681c241b2e3012bcb9cc8a3
|
3 |
+
size 1064
|
checkpoint-336/trainer_state.json
ADDED
@@ -0,0 +1,2477 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.203959345817566,
|
3 |
+
"best_model_checkpoint": "./out/checkpoint-112",
|
4 |
+
"epoch": 2.991097922848665,
|
5 |
+
"eval_steps": 28,
|
6 |
+
"global_step": 336,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.01,
|
13 |
+
"grad_norm": 4.313233023002325,
|
14 |
+
"learning_rate": 1.8181818181818182e-05,
|
15 |
+
"loss": 1.9528,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.01,
|
20 |
+
"eval_loss": 2.1875686645507812,
|
21 |
+
"eval_runtime": 12.8608,
|
22 |
+
"eval_samples_per_second": 23.327,
|
23 |
+
"eval_steps_per_second": 2.955,
|
24 |
+
"step": 1
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.02,
|
28 |
+
"grad_norm": 4.039172290955229,
|
29 |
+
"learning_rate": 3.6363636363636364e-05,
|
30 |
+
"loss": 1.8358,
|
31 |
+
"step": 2
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.03,
|
35 |
+
"grad_norm": 4.504705512003857,
|
36 |
+
"learning_rate": 5.4545454545454546e-05,
|
37 |
+
"loss": 2.0207,
|
38 |
+
"step": 3
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.04,
|
42 |
+
"grad_norm": 4.591862504847867,
|
43 |
+
"learning_rate": 7.272727272727273e-05,
|
44 |
+
"loss": 1.979,
|
45 |
+
"step": 4
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.04,
|
49 |
+
"grad_norm": 3.812893581399005,
|
50 |
+
"learning_rate": 9.090909090909092e-05,
|
51 |
+
"loss": 1.8356,
|
52 |
+
"step": 5
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 0.05,
|
56 |
+
"grad_norm": 0.42886752872747064,
|
57 |
+
"learning_rate": 0.00010909090909090909,
|
58 |
+
"loss": 1.6722,
|
59 |
+
"step": 6
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.06,
|
63 |
+
"grad_norm": 0.22497294481851865,
|
64 |
+
"learning_rate": 0.00012727272727272728,
|
65 |
+
"loss": 1.6711,
|
66 |
+
"step": 7
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 0.07,
|
70 |
+
"grad_norm": 0.20955259847301927,
|
71 |
+
"learning_rate": 0.00014545454545454546,
|
72 |
+
"loss": 1.8546,
|
73 |
+
"step": 8
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.08,
|
77 |
+
"grad_norm": 0.2200095325539683,
|
78 |
+
"learning_rate": 0.00016363636363636366,
|
79 |
+
"loss": 1.7538,
|
80 |
+
"step": 9
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.09,
|
84 |
+
"grad_norm": 0.19187339879899318,
|
85 |
+
"learning_rate": 0.00018181818181818183,
|
86 |
+
"loss": 1.6137,
|
87 |
+
"step": 10
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.1,
|
91 |
+
"grad_norm": 0.2113395673717837,
|
92 |
+
"learning_rate": 0.0002,
|
93 |
+
"loss": 1.5225,
|
94 |
+
"step": 11
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 0.11,
|
98 |
+
"grad_norm": 0.17673768408382828,
|
99 |
+
"learning_rate": 0.00019999741592564903,
|
100 |
+
"loss": 1.5303,
|
101 |
+
"step": 12
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.12,
|
105 |
+
"grad_norm": 0.24120852820548402,
|
106 |
+
"learning_rate": 0.00019998966383614488,
|
107 |
+
"loss": 1.5089,
|
108 |
+
"step": 13
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.12,
|
112 |
+
"grad_norm": 0.3089489160535682,
|
113 |
+
"learning_rate": 0.00019997674413212708,
|
114 |
+
"loss": 1.4525,
|
115 |
+
"step": 14
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.13,
|
119 |
+
"grad_norm": 0.2656143410731927,
|
120 |
+
"learning_rate": 0.00019995865748130516,
|
121 |
+
"loss": 1.4648,
|
122 |
+
"step": 15
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.14,
|
126 |
+
"grad_norm": 3.769410316227205,
|
127 |
+
"learning_rate": 0.0001999354048184241,
|
128 |
+
"loss": 1.3439,
|
129 |
+
"step": 16
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.15,
|
133 |
+
"grad_norm": 0.32102180658823753,
|
134 |
+
"learning_rate": 0.00019990698734521613,
|
135 |
+
"loss": 1.4644,
|
136 |
+
"step": 17
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.16,
|
140 |
+
"grad_norm": 0.22094428128919438,
|
141 |
+
"learning_rate": 0.0001998734065303385,
|
142 |
+
"loss": 1.1927,
|
143 |
+
"step": 18
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 0.17,
|
147 |
+
"grad_norm": 0.22344487218098863,
|
148 |
+
"learning_rate": 0.00019983466410929764,
|
149 |
+
"loss": 1.2916,
|
150 |
+
"step": 19
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 0.18,
|
154 |
+
"grad_norm": 0.25036262498479456,
|
155 |
+
"learning_rate": 0.0001997907620843595,
|
156 |
+
"loss": 1.2982,
|
157 |
+
"step": 20
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"epoch": 0.19,
|
161 |
+
"grad_norm": 0.22671119151539426,
|
162 |
+
"learning_rate": 0.00019974170272444604,
|
163 |
+
"loss": 1.2146,
|
164 |
+
"step": 21
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.2,
|
168 |
+
"grad_norm": 0.259249080403425,
|
169 |
+
"learning_rate": 0.00019968748856501788,
|
170 |
+
"loss": 1.2072,
|
171 |
+
"step": 22
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.2,
|
175 |
+
"grad_norm": 0.23538477651406017,
|
176 |
+
"learning_rate": 0.00019962812240794343,
|
177 |
+
"loss": 1.3281,
|
178 |
+
"step": 23
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 0.21,
|
182 |
+
"grad_norm": 0.2659115087625978,
|
183 |
+
"learning_rate": 0.000199563607321354,
|
184 |
+
"loss": 1.1396,
|
185 |
+
"step": 24
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 0.22,
|
189 |
+
"grad_norm": 0.23617264858854836,
|
190 |
+
"learning_rate": 0.0001994939466394851,
|
191 |
+
"loss": 1.1389,
|
192 |
+
"step": 25
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 0.23,
|
196 |
+
"grad_norm": 0.20514227454180176,
|
197 |
+
"learning_rate": 0.00019941914396250446,
|
198 |
+
"loss": 1.249,
|
199 |
+
"step": 26
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"epoch": 0.24,
|
203 |
+
"grad_norm": 0.19660894225830144,
|
204 |
+
"learning_rate": 0.00019933920315632557,
|
205 |
+
"loss": 1.1776,
|
206 |
+
"step": 27
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.25,
|
210 |
+
"grad_norm": 0.2067663909729571,
|
211 |
+
"learning_rate": 0.00019925412835240826,
|
212 |
+
"loss": 1.1327,
|
213 |
+
"step": 28
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.25,
|
217 |
+
"eval_loss": 1.2991960048675537,
|
218 |
+
"eval_runtime": 13.153,
|
219 |
+
"eval_samples_per_second": 22.808,
|
220 |
+
"eval_steps_per_second": 2.889,
|
221 |
+
"step": 28
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"epoch": 0.26,
|
225 |
+
"grad_norm": 0.1816588361901526,
|
226 |
+
"learning_rate": 0.0001991639239475448,
|
227 |
+
"loss": 1.1247,
|
228 |
+
"step": 29
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"epoch": 0.27,
|
232 |
+
"grad_norm": 0.19626955153633807,
|
233 |
+
"learning_rate": 0.00019906859460363307,
|
234 |
+
"loss": 1.1212,
|
235 |
+
"step": 30
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"epoch": 0.28,
|
239 |
+
"grad_norm": 0.21084275590405852,
|
240 |
+
"learning_rate": 0.00019896814524743528,
|
241 |
+
"loss": 0.9927,
|
242 |
+
"step": 31
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 0.28,
|
246 |
+
"grad_norm": 0.16560054949456768,
|
247 |
+
"learning_rate": 0.0001988625810703235,
|
248 |
+
"loss": 1.1249,
|
249 |
+
"step": 32
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.29,
|
253 |
+
"grad_norm": 0.14950879528294536,
|
254 |
+
"learning_rate": 0.0001987519075280114,
|
255 |
+
"loss": 1.1401,
|
256 |
+
"step": 33
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 0.3,
|
260 |
+
"grad_norm": 0.1777966882651237,
|
261 |
+
"learning_rate": 0.00019863613034027224,
|
262 |
+
"loss": 1.0769,
|
263 |
+
"step": 34
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"epoch": 0.31,
|
267 |
+
"grad_norm": 0.1480537272052743,
|
268 |
+
"learning_rate": 0.00019851525549064323,
|
269 |
+
"loss": 1.0686,
|
270 |
+
"step": 35
|
271 |
+
},
|
272 |
+
{
|
273 |
+
"epoch": 0.32,
|
274 |
+
"grad_norm": 0.16911906750319078,
|
275 |
+
"learning_rate": 0.00019838928922611632,
|
276 |
+
"loss": 1.0253,
|
277 |
+
"step": 36
|
278 |
+
},
|
279 |
+
{
|
280 |
+
"epoch": 0.33,
|
281 |
+
"grad_norm": 0.15987682972555176,
|
282 |
+
"learning_rate": 0.00019825823805681543,
|
283 |
+
"loss": 1.0609,
|
284 |
+
"step": 37
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 0.34,
|
288 |
+
"grad_norm": 0.15757332939676763,
|
289 |
+
"learning_rate": 0.0001981221087556598,
|
290 |
+
"loss": 1.1086,
|
291 |
+
"step": 38
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 0.35,
|
295 |
+
"grad_norm": 0.13201845744757537,
|
296 |
+
"learning_rate": 0.00019798090835801418,
|
297 |
+
"loss": 1.073,
|
298 |
+
"step": 39
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"epoch": 0.36,
|
302 |
+
"grad_norm": 0.12544508015984754,
|
303 |
+
"learning_rate": 0.00019783464416132506,
|
304 |
+
"loss": 1.0633,
|
305 |
+
"step": 40
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"epoch": 0.36,
|
309 |
+
"grad_norm": 0.14645820383886451,
|
310 |
+
"learning_rate": 0.00019768332372474366,
|
311 |
+
"loss": 1.0653,
|
312 |
+
"step": 41
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"epoch": 0.37,
|
316 |
+
"grad_norm": 0.14814101902137117,
|
317 |
+
"learning_rate": 0.00019752695486873517,
|
318 |
+
"loss": 1.0937,
|
319 |
+
"step": 42
|
320 |
+
},
|
321 |
+
{
|
322 |
+
"epoch": 0.38,
|
323 |
+
"grad_norm": 0.13888915595055443,
|
324 |
+
"learning_rate": 0.00019736554567467452,
|
325 |
+
"loss": 1.0462,
|
326 |
+
"step": 43
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 0.39,
|
330 |
+
"grad_norm": 0.13185349806639524,
|
331 |
+
"learning_rate": 0.00019719910448442893,
|
332 |
+
"loss": 1.2177,
|
333 |
+
"step": 44
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 0.4,
|
337 |
+
"grad_norm": 0.15271046712350847,
|
338 |
+
"learning_rate": 0.00019702763989992662,
|
339 |
+
"loss": 1.0237,
|
340 |
+
"step": 45
|
341 |
+
},
|
342 |
+
{
|
343 |
+
"epoch": 0.41,
|
344 |
+
"grad_norm": 0.17053588557430902,
|
345 |
+
"learning_rate": 0.00019685116078271223,
|
346 |
+
"loss": 1.0038,
|
347 |
+
"step": 46
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"epoch": 0.42,
|
351 |
+
"grad_norm": 0.15641087356577812,
|
352 |
+
"learning_rate": 0.00019666967625348906,
|
353 |
+
"loss": 1.0886,
|
354 |
+
"step": 47
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 0.43,
|
358 |
+
"grad_norm": 0.1544028594191567,
|
359 |
+
"learning_rate": 0.00019648319569164736,
|
360 |
+
"loss": 1.1378,
|
361 |
+
"step": 48
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 0.44,
|
365 |
+
"grad_norm": 0.14794885994140625,
|
366 |
+
"learning_rate": 0.00019629172873477995,
|
367 |
+
"loss": 1.1495,
|
368 |
+
"step": 49
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 0.45,
|
372 |
+
"grad_norm": 0.1577684884028266,
|
373 |
+
"learning_rate": 0.0001960952852781838,
|
374 |
+
"loss": 1.0782,
|
375 |
+
"step": 50
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"epoch": 0.45,
|
379 |
+
"grad_norm": 0.15961044045091288,
|
380 |
+
"learning_rate": 0.0001958938754743489,
|
381 |
+
"loss": 1.0107,
|
382 |
+
"step": 51
|
383 |
+
},
|
384 |
+
{
|
385 |
+
"epoch": 0.46,
|
386 |
+
"grad_norm": 0.14486696586022083,
|
387 |
+
"learning_rate": 0.0001956875097324334,
|
388 |
+
"loss": 1.0494,
|
389 |
+
"step": 52
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"epoch": 0.47,
|
393 |
+
"grad_norm": 0.14250413725518896,
|
394 |
+
"learning_rate": 0.00019547619871772574,
|
395 |
+
"loss": 1.039,
|
396 |
+
"step": 53
|
397 |
+
},
|
398 |
+
{
|
399 |
+
"epoch": 0.48,
|
400 |
+
"grad_norm": 0.1196720279125328,
|
401 |
+
"learning_rate": 0.00019525995335109334,
|
402 |
+
"loss": 1.0966,
|
403 |
+
"step": 54
|
404 |
+
},
|
405 |
+
{
|
406 |
+
"epoch": 0.49,
|
407 |
+
"grad_norm": 0.14984795891635327,
|
408 |
+
"learning_rate": 0.0001950387848084183,
|
409 |
+
"loss": 1.0874,
|
410 |
+
"step": 55
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 0.5,
|
414 |
+
"grad_norm": 0.14891088442480416,
|
415 |
+
"learning_rate": 0.00019481270452001987,
|
416 |
+
"loss": 1.097,
|
417 |
+
"step": 56
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 0.5,
|
421 |
+
"eval_loss": 1.2264304161071777,
|
422 |
+
"eval_runtime": 13.2279,
|
423 |
+
"eval_samples_per_second": 22.679,
|
424 |
+
"eval_steps_per_second": 2.873,
|
425 |
+
"step": 56
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"epoch": 0.51,
|
429 |
+
"grad_norm": 0.17814266552244534,
|
430 |
+
"learning_rate": 0.00019458172417006347,
|
431 |
+
"loss": 1.1372,
|
432 |
+
"step": 57
|
433 |
+
},
|
434 |
+
{
|
435 |
+
"epoch": 0.52,
|
436 |
+
"grad_norm": 0.16125636132578247,
|
437 |
+
"learning_rate": 0.00019434585569595708,
|
438 |
+
"loss": 1.0623,
|
439 |
+
"step": 58
|
440 |
+
},
|
441 |
+
{
|
442 |
+
"epoch": 0.53,
|
443 |
+
"grad_norm": 0.15203437202125702,
|
444 |
+
"learning_rate": 0.00019410511128773418,
|
445 |
+
"loss": 1.0399,
|
446 |
+
"step": 59
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"epoch": 0.53,
|
450 |
+
"grad_norm": 0.1677461135605213,
|
451 |
+
"learning_rate": 0.0001938595033874238,
|
452 |
+
"loss": 1.0884,
|
453 |
+
"step": 60
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 0.54,
|
457 |
+
"grad_norm": 0.13564559875683407,
|
458 |
+
"learning_rate": 0.0001936090446884074,
|
459 |
+
"loss": 1.0176,
|
460 |
+
"step": 61
|
461 |
+
},
|
462 |
+
{
|
463 |
+
"epoch": 0.55,
|
464 |
+
"grad_norm": 0.1521886500642157,
|
465 |
+
"learning_rate": 0.00019335374813476302,
|
466 |
+
"loss": 1.0146,
|
467 |
+
"step": 62
|
468 |
+
},
|
469 |
+
{
|
470 |
+
"epoch": 0.56,
|
471 |
+
"grad_norm": 0.1410132122625916,
|
472 |
+
"learning_rate": 0.00019309362692059617,
|
473 |
+
"loss": 1.044,
|
474 |
+
"step": 63
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 0.57,
|
478 |
+
"grad_norm": 0.15237848179385577,
|
479 |
+
"learning_rate": 0.00019282869448935798,
|
480 |
+
"loss": 1.0354,
|
481 |
+
"step": 64
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 0.58,
|
485 |
+
"grad_norm": 0.13871660988504514,
|
486 |
+
"learning_rate": 0.00019255896453315052,
|
487 |
+
"loss": 1.0189,
|
488 |
+
"step": 65
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"epoch": 0.59,
|
492 |
+
"grad_norm": 0.14863047478901453,
|
493 |
+
"learning_rate": 0.000192284450992019,
|
494 |
+
"loss": 1.0704,
|
495 |
+
"step": 66
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"epoch": 0.6,
|
499 |
+
"grad_norm": 0.13794806124403974,
|
500 |
+
"learning_rate": 0.0001920051680532314,
|
501 |
+
"loss": 1.0996,
|
502 |
+
"step": 67
|
503 |
+
},
|
504 |
+
{
|
505 |
+
"epoch": 0.61,
|
506 |
+
"grad_norm": 0.13030507705779365,
|
507 |
+
"learning_rate": 0.00019172113015054532,
|
508 |
+
"loss": 1.0015,
|
509 |
+
"step": 68
|
510 |
+
},
|
511 |
+
{
|
512 |
+
"epoch": 0.61,
|
513 |
+
"grad_norm": 0.15092494718902358,
|
514 |
+
"learning_rate": 0.0001914323519634619,
|
515 |
+
"loss": 1.0822,
|
516 |
+
"step": 69
|
517 |
+
},
|
518 |
+
{
|
519 |
+
"epoch": 0.62,
|
520 |
+
"grad_norm": 0.1350212989006066,
|
521 |
+
"learning_rate": 0.00019113884841646736,
|
522 |
+
"loss": 1.0197,
|
523 |
+
"step": 70
|
524 |
+
},
|
525 |
+
{
|
526 |
+
"epoch": 0.63,
|
527 |
+
"grad_norm": 0.18991168066586347,
|
528 |
+
"learning_rate": 0.00019084063467826137,
|
529 |
+
"loss": 1.046,
|
530 |
+
"step": 71
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"epoch": 0.64,
|
534 |
+
"grad_norm": 0.14884381774710187,
|
535 |
+
"learning_rate": 0.00019053772616097337,
|
536 |
+
"loss": 1.0346,
|
537 |
+
"step": 72
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"epoch": 0.65,
|
541 |
+
"grad_norm": 0.15579311209945296,
|
542 |
+
"learning_rate": 0.000190230138519366,
|
543 |
+
"loss": 1.0505,
|
544 |
+
"step": 73
|
545 |
+
},
|
546 |
+
{
|
547 |
+
"epoch": 0.66,
|
548 |
+
"grad_norm": 0.16015337150592127,
|
549 |
+
"learning_rate": 0.000189917887650026,
|
550 |
+
"loss": 1.0504,
|
551 |
+
"step": 74
|
552 |
+
},
|
553 |
+
{
|
554 |
+
"epoch": 0.67,
|
555 |
+
"grad_norm": 0.1443969321518926,
|
556 |
+
"learning_rate": 0.00018960098969054255,
|
557 |
+
"loss": 1.0755,
|
558 |
+
"step": 75
|
559 |
+
},
|
560 |
+
{
|
561 |
+
"epoch": 0.68,
|
562 |
+
"grad_norm": 0.15722162227095848,
|
563 |
+
"learning_rate": 0.00018927946101867347,
|
564 |
+
"loss": 1.0541,
|
565 |
+
"step": 76
|
566 |
+
},
|
567 |
+
{
|
568 |
+
"epoch": 0.69,
|
569 |
+
"grad_norm": 0.17009697584926559,
|
570 |
+
"learning_rate": 0.0001889533182514986,
|
571 |
+
"loss": 1.0231,
|
572 |
+
"step": 77
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"epoch": 0.69,
|
576 |
+
"grad_norm": 0.1256822726781221,
|
577 |
+
"learning_rate": 0.0001886225782445612,
|
578 |
+
"loss": 0.8814,
|
579 |
+
"step": 78
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 0.7,
|
583 |
+
"grad_norm": 0.14019958069756655,
|
584 |
+
"learning_rate": 0.00018828725809099655,
|
585 |
+
"loss": 1.0277,
|
586 |
+
"step": 79
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 0.71,
|
590 |
+
"grad_norm": 0.17159459150063183,
|
591 |
+
"learning_rate": 0.0001879473751206489,
|
592 |
+
"loss": 0.9495,
|
593 |
+
"step": 80
|
594 |
+
},
|
595 |
+
{
|
596 |
+
"epoch": 0.72,
|
597 |
+
"grad_norm": 0.146430011834186,
|
598 |
+
"learning_rate": 0.00018760294689917553,
|
599 |
+
"loss": 1.0598,
|
600 |
+
"step": 81
|
601 |
+
},
|
602 |
+
{
|
603 |
+
"epoch": 0.73,
|
604 |
+
"grad_norm": 0.16834256802992476,
|
605 |
+
"learning_rate": 0.00018725399122713912,
|
606 |
+
"loss": 1.0237,
|
607 |
+
"step": 82
|
608 |
+
},
|
609 |
+
{
|
610 |
+
"epoch": 0.74,
|
611 |
+
"grad_norm": 0.15663699267164208,
|
612 |
+
"learning_rate": 0.00018690052613908772,
|
613 |
+
"loss": 0.939,
|
614 |
+
"step": 83
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"epoch": 0.75,
|
618 |
+
"grad_norm": 0.15655985150409854,
|
619 |
+
"learning_rate": 0.0001865425699026226,
|
620 |
+
"loss": 1.0302,
|
621 |
+
"step": 84
|
622 |
+
},
|
623 |
+
{
|
624 |
+
"epoch": 0.75,
|
625 |
+
"eval_loss": 1.2143030166625977,
|
626 |
+
"eval_runtime": 13.2387,
|
627 |
+
"eval_samples_per_second": 22.661,
|
628 |
+
"eval_steps_per_second": 2.87,
|
629 |
+
"step": 84
|
630 |
+
},
|
631 |
+
{
|
632 |
+
"epoch": 0.76,
|
633 |
+
"grad_norm": 0.15273470110260864,
|
634 |
+
"learning_rate": 0.00018618014101745442,
|
635 |
+
"loss": 1.0127,
|
636 |
+
"step": 85
|
637 |
+
},
|
638 |
+
{
|
639 |
+
"epoch": 0.77,
|
640 |
+
"grad_norm": 0.1723243680259614,
|
641 |
+
"learning_rate": 0.0001858132582144469,
|
642 |
+
"loss": 0.9306,
|
643 |
+
"step": 86
|
644 |
+
},
|
645 |
+
{
|
646 |
+
"epoch": 0.77,
|
647 |
+
"grad_norm": 0.14747098547446996,
|
648 |
+
"learning_rate": 0.00018544194045464886,
|
649 |
+
"loss": 1.0073,
|
650 |
+
"step": 87
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"epoch": 0.78,
|
654 |
+
"grad_norm": 0.17208333285514918,
|
655 |
+
"learning_rate": 0.00018506620692831428,
|
656 |
+
"loss": 1.0328,
|
657 |
+
"step": 88
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"epoch": 0.79,
|
661 |
+
"grad_norm": 0.14918051024971962,
|
662 |
+
"learning_rate": 0.0001846860770539105,
|
663 |
+
"loss": 1.0022,
|
664 |
+
"step": 89
|
665 |
+
},
|
666 |
+
{
|
667 |
+
"epoch": 0.8,
|
668 |
+
"grad_norm": 0.156315164090714,
|
669 |
+
"learning_rate": 0.00018430157047711474,
|
670 |
+
"loss": 1.0293,
|
671 |
+
"step": 90
|
672 |
+
},
|
673 |
+
{
|
674 |
+
"epoch": 0.81,
|
675 |
+
"grad_norm": 0.2013424548288477,
|
676 |
+
"learning_rate": 0.00018391270706979862,
|
677 |
+
"loss": 0.9395,
|
678 |
+
"step": 91
|
679 |
+
},
|
680 |
+
{
|
681 |
+
"epoch": 0.82,
|
682 |
+
"grad_norm": 0.17909726353002614,
|
683 |
+
"learning_rate": 0.00018351950692900126,
|
684 |
+
"loss": 0.9756,
|
685 |
+
"step": 92
|
686 |
+
},
|
687 |
+
{
|
688 |
+
"epoch": 0.83,
|
689 |
+
"grad_norm": 0.16939245158726288,
|
690 |
+
"learning_rate": 0.00018312199037589068,
|
691 |
+
"loss": 0.9576,
|
692 |
+
"step": 93
|
693 |
+
},
|
694 |
+
{
|
695 |
+
"epoch": 0.84,
|
696 |
+
"grad_norm": 0.14685720680893694,
|
697 |
+
"learning_rate": 0.00018272017795471345,
|
698 |
+
"loss": 1.0045,
|
699 |
+
"step": 94
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 0.85,
|
703 |
+
"grad_norm": 0.17464839085505987,
|
704 |
+
"learning_rate": 0.000182314090431733,
|
705 |
+
"loss": 0.9862,
|
706 |
+
"step": 95
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 0.85,
|
710 |
+
"grad_norm": 0.16060904136932572,
|
711 |
+
"learning_rate": 0.00018190374879415632,
|
712 |
+
"loss": 1.0022,
|
713 |
+
"step": 96
|
714 |
+
},
|
715 |
+
{
|
716 |
+
"epoch": 0.86,
|
717 |
+
"grad_norm": 0.18715193350083867,
|
718 |
+
"learning_rate": 0.00018148917424904953,
|
719 |
+
"loss": 1.042,
|
720 |
+
"step": 97
|
721 |
+
},
|
722 |
+
{
|
723 |
+
"epoch": 0.87,
|
724 |
+
"grad_norm": 0.1675573400576595,
|
725 |
+
"learning_rate": 0.0001810703882222415,
|
726 |
+
"loss": 1.0047,
|
727 |
+
"step": 98
|
728 |
+
},
|
729 |
+
{
|
730 |
+
"epoch": 0.88,
|
731 |
+
"grad_norm": 0.1871466286989249,
|
732 |
+
"learning_rate": 0.00018064741235721687,
|
733 |
+
"loss": 0.9834,
|
734 |
+
"step": 99
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 0.89,
|
738 |
+
"grad_norm": 0.17453934867565302,
|
739 |
+
"learning_rate": 0.00018022026851399737,
|
740 |
+
"loss": 0.9649,
|
741 |
+
"step": 100
|
742 |
+
},
|
743 |
+
{
|
744 |
+
"epoch": 0.9,
|
745 |
+
"grad_norm": 0.15960631507184767,
|
746 |
+
"learning_rate": 0.0001797889787680119,
|
747 |
+
"loss": 0.9673,
|
748 |
+
"step": 101
|
749 |
+
},
|
750 |
+
{
|
751 |
+
"epoch": 0.91,
|
752 |
+
"grad_norm": 0.17844936635366368,
|
753 |
+
"learning_rate": 0.00017935356540895597,
|
754 |
+
"loss": 1.0951,
|
755 |
+
"step": 102
|
756 |
+
},
|
757 |
+
{
|
758 |
+
"epoch": 0.92,
|
759 |
+
"grad_norm": 0.16733018789000254,
|
760 |
+
"learning_rate": 0.00017891405093963938,
|
761 |
+
"loss": 0.9954,
|
762 |
+
"step": 103
|
763 |
+
},
|
764 |
+
{
|
765 |
+
"epoch": 0.93,
|
766 |
+
"grad_norm": 0.17305556075296993,
|
767 |
+
"learning_rate": 0.00017847045807482345,
|
768 |
+
"loss": 0.892,
|
769 |
+
"step": 104
|
770 |
+
},
|
771 |
+
{
|
772 |
+
"epoch": 0.93,
|
773 |
+
"grad_norm": 0.17197614099805034,
|
774 |
+
"learning_rate": 0.00017802280974004716,
|
775 |
+
"loss": 1.0494,
|
776 |
+
"step": 105
|
777 |
+
},
|
778 |
+
{
|
779 |
+
"epoch": 0.94,
|
780 |
+
"grad_norm": 0.18063836817127235,
|
781 |
+
"learning_rate": 0.000177571129070442,
|
782 |
+
"loss": 1.0264,
|
783 |
+
"step": 106
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"epoch": 0.95,
|
787 |
+
"grad_norm": 0.14597707005699143,
|
788 |
+
"learning_rate": 0.00017711543940953668,
|
789 |
+
"loss": 0.9532,
|
790 |
+
"step": 107
|
791 |
+
},
|
792 |
+
{
|
793 |
+
"epoch": 0.96,
|
794 |
+
"grad_norm": 0.1422048149465345,
|
795 |
+
"learning_rate": 0.00017665576430805053,
|
796 |
+
"loss": 0.97,
|
797 |
+
"step": 108
|
798 |
+
},
|
799 |
+
{
|
800 |
+
"epoch": 0.97,
|
801 |
+
"grad_norm": 0.18313914688655572,
|
802 |
+
"learning_rate": 0.0001761921275226763,
|
803 |
+
"loss": 0.9282,
|
804 |
+
"step": 109
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"epoch": 0.98,
|
808 |
+
"grad_norm": 0.200679751171441,
|
809 |
+
"learning_rate": 0.00017572455301485249,
|
810 |
+
"loss": 1.0,
|
811 |
+
"step": 110
|
812 |
+
},
|
813 |
+
{
|
814 |
+
"epoch": 0.99,
|
815 |
+
"grad_norm": 0.17700985594898055,
|
816 |
+
"learning_rate": 0.00017525306494952498,
|
817 |
+
"loss": 1.0165,
|
818 |
+
"step": 111
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"epoch": 1.0,
|
822 |
+
"grad_norm": 0.19925777202726191,
|
823 |
+
"learning_rate": 0.0001747776876938981,
|
824 |
+
"loss": 1.0346,
|
825 |
+
"step": 112
|
826 |
+
},
|
827 |
+
{
|
828 |
+
"epoch": 1.0,
|
829 |
+
"eval_loss": 1.203959345817566,
|
830 |
+
"eval_runtime": 13.2547,
|
831 |
+
"eval_samples_per_second": 22.634,
|
832 |
+
"eval_steps_per_second": 2.867,
|
833 |
+
"step": 112
|
834 |
+
},
|
835 |
+
{
|
836 |
+
"epoch": 1.01,
|
837 |
+
"grad_norm": 0.1606469603473709,
|
838 |
+
"learning_rate": 0.00017429844581617532,
|
839 |
+
"loss": 0.9832,
|
840 |
+
"step": 113
|
841 |
+
},
|
842 |
+
{
|
843 |
+
"epoch": 1.01,
|
844 |
+
"grad_norm": 0.16403912763780054,
|
845 |
+
"learning_rate": 0.00017381536408428948,
|
846 |
+
"loss": 0.9346,
|
847 |
+
"step": 114
|
848 |
+
},
|
849 |
+
{
|
850 |
+
"epoch": 1.02,
|
851 |
+
"grad_norm": 0.1936046893744468,
|
852 |
+
"learning_rate": 0.00017332846746462288,
|
853 |
+
"loss": 0.9382,
|
854 |
+
"step": 115
|
855 |
+
},
|
856 |
+
{
|
857 |
+
"epoch": 1.03,
|
858 |
+
"grad_norm": 0.14250769247239573,
|
859 |
+
"learning_rate": 0.0001728377811207168,
|
860 |
+
"loss": 0.8914,
|
861 |
+
"step": 116
|
862 |
+
},
|
863 |
+
{
|
864 |
+
"epoch": 1.04,
|
865 |
+
"grad_norm": 0.17889563599797687,
|
866 |
+
"learning_rate": 0.00017234333041197126,
|
867 |
+
"loss": 0.9736,
|
868 |
+
"step": 117
|
869 |
+
},
|
870 |
+
{
|
871 |
+
"epoch": 1.05,
|
872 |
+
"grad_norm": 0.20288960866045594,
|
873 |
+
"learning_rate": 0.00017184514089233405,
|
874 |
+
"loss": 0.8477,
|
875 |
+
"step": 118
|
876 |
+
},
|
877 |
+
{
|
878 |
+
"epoch": 1.06,
|
879 |
+
"grad_norm": 0.20926349930533472,
|
880 |
+
"learning_rate": 0.00017134323830898037,
|
881 |
+
"loss": 0.9933,
|
882 |
+
"step": 119
|
883 |
+
},
|
884 |
+
{
|
885 |
+
"epoch": 1.07,
|
886 |
+
"grad_norm": 0.21316934416499642,
|
887 |
+
"learning_rate": 0.00017083764860098205,
|
888 |
+
"loss": 0.9168,
|
889 |
+
"step": 120
|
890 |
+
},
|
891 |
+
{
|
892 |
+
"epoch": 1.08,
|
893 |
+
"grad_norm": 0.21654320387312692,
|
894 |
+
"learning_rate": 0.0001703283978979671,
|
895 |
+
"loss": 0.9584,
|
896 |
+
"step": 121
|
897 |
+
},
|
898 |
+
{
|
899 |
+
"epoch": 1.09,
|
900 |
+
"grad_norm": 0.23789742308175463,
|
901 |
+
"learning_rate": 0.00016981551251876904,
|
902 |
+
"loss": 1.0298,
|
903 |
+
"step": 122
|
904 |
+
},
|
905 |
+
{
|
906 |
+
"epoch": 1.09,
|
907 |
+
"grad_norm": 0.16433271793469648,
|
908 |
+
"learning_rate": 0.00016929901897006698,
|
909 |
+
"loss": 0.8833,
|
910 |
+
"step": 123
|
911 |
+
},
|
912 |
+
{
|
913 |
+
"epoch": 1.1,
|
914 |
+
"grad_norm": 0.16908727866207868,
|
915 |
+
"learning_rate": 0.0001687789439450156,
|
916 |
+
"loss": 1.0675,
|
917 |
+
"step": 124
|
918 |
+
},
|
919 |
+
{
|
920 |
+
"epoch": 1.11,
|
921 |
+
"grad_norm": 0.1670067931363302,
|
922 |
+
"learning_rate": 0.00016825531432186543,
|
923 |
+
"loss": 0.9515,
|
924 |
+
"step": 125
|
925 |
+
},
|
926 |
+
{
|
927 |
+
"epoch": 1.12,
|
928 |
+
"grad_norm": 0.17777465531550865,
|
929 |
+
"learning_rate": 0.00016772815716257412,
|
930 |
+
"loss": 0.8929,
|
931 |
+
"step": 126
|
932 |
+
},
|
933 |
+
{
|
934 |
+
"epoch": 1.13,
|
935 |
+
"grad_norm": 0.18442783204919333,
|
936 |
+
"learning_rate": 0.00016719749971140754,
|
937 |
+
"loss": 0.8388,
|
938 |
+
"step": 127
|
939 |
+
},
|
940 |
+
{
|
941 |
+
"epoch": 1.14,
|
942 |
+
"grad_norm": 0.19073362304284272,
|
943 |
+
"learning_rate": 0.0001666633693935319,
|
944 |
+
"loss": 0.9584,
|
945 |
+
"step": 128
|
946 |
+
},
|
947 |
+
{
|
948 |
+
"epoch": 1.15,
|
949 |
+
"grad_norm": 0.20189563405135308,
|
950 |
+
"learning_rate": 0.00016612579381359622,
|
951 |
+
"loss": 1.0264,
|
952 |
+
"step": 129
|
953 |
+
},
|
954 |
+
{
|
955 |
+
"epoch": 1.16,
|
956 |
+
"grad_norm": 0.1694138210313381,
|
957 |
+
"learning_rate": 0.00016558480075430594,
|
958 |
+
"loss": 0.9592,
|
959 |
+
"step": 130
|
960 |
+
},
|
961 |
+
{
|
962 |
+
"epoch": 1.17,
|
963 |
+
"grad_norm": 0.19195382946787184,
|
964 |
+
"learning_rate": 0.00016504041817498678,
|
965 |
+
"loss": 0.974,
|
966 |
+
"step": 131
|
967 |
+
},
|
968 |
+
{
|
969 |
+
"epoch": 1.18,
|
970 |
+
"grad_norm": 0.20684215619155688,
|
971 |
+
"learning_rate": 0.00016449267421013994,
|
972 |
+
"loss": 0.8499,
|
973 |
+
"step": 132
|
974 |
+
},
|
975 |
+
{
|
976 |
+
"epoch": 1.18,
|
977 |
+
"grad_norm": 0.22003490429847744,
|
978 |
+
"learning_rate": 0.00016394159716798807,
|
979 |
+
"loss": 0.9659,
|
980 |
+
"step": 133
|
981 |
+
},
|
982 |
+
{
|
983 |
+
"epoch": 1.19,
|
984 |
+
"grad_norm": 0.21977918206745437,
|
985 |
+
"learning_rate": 0.00016338721552901212,
|
986 |
+
"loss": 0.9213,
|
987 |
+
"step": 134
|
988 |
+
},
|
989 |
+
{
|
990 |
+
"epoch": 1.2,
|
991 |
+
"grad_norm": 0.2076993903333204,
|
992 |
+
"learning_rate": 0.0001628295579444796,
|
993 |
+
"loss": 0.8119,
|
994 |
+
"step": 135
|
995 |
+
},
|
996 |
+
{
|
997 |
+
"epoch": 1.21,
|
998 |
+
"grad_norm": 0.2001771499954729,
|
999 |
+
"learning_rate": 0.0001622686532349637,
|
1000 |
+
"loss": 0.9183,
|
1001 |
+
"step": 136
|
1002 |
+
},
|
1003 |
+
{
|
1004 |
+
"epoch": 1.22,
|
1005 |
+
"grad_norm": 0.18671550149366203,
|
1006 |
+
"learning_rate": 0.00016170453038885394,
|
1007 |
+
"loss": 0.8836,
|
1008 |
+
"step": 137
|
1009 |
+
},
|
1010 |
+
{
|
1011 |
+
"epoch": 1.23,
|
1012 |
+
"grad_norm": 0.20867427207572573,
|
1013 |
+
"learning_rate": 0.0001611372185608578,
|
1014 |
+
"loss": 0.9964,
|
1015 |
+
"step": 138
|
1016 |
+
},
|
1017 |
+
{
|
1018 |
+
"epoch": 1.24,
|
1019 |
+
"grad_norm": 0.20035138443113176,
|
1020 |
+
"learning_rate": 0.0001605667470704942,
|
1021 |
+
"loss": 0.9209,
|
1022 |
+
"step": 139
|
1023 |
+
},
|
1024 |
+
{
|
1025 |
+
"epoch": 1.25,
|
1026 |
+
"grad_norm": 0.22696612020505577,
|
1027 |
+
"learning_rate": 0.0001599931454005781,
|
1028 |
+
"loss": 1.0162,
|
1029 |
+
"step": 140
|
1030 |
+
},
|
1031 |
+
{
|
1032 |
+
"epoch": 1.25,
|
1033 |
+
"eval_loss": 1.2188584804534912,
|
1034 |
+
"eval_runtime": 13.249,
|
1035 |
+
"eval_samples_per_second": 22.643,
|
1036 |
+
"eval_steps_per_second": 2.868,
|
1037 |
+
"step": 140
|
1038 |
+
},
|
1039 |
+
{
|
1040 |
+
"epoch": 1.26,
|
1041 |
+
"grad_norm": 0.21554353495018647,
|
1042 |
+
"learning_rate": 0.00015941644319569665,
|
1043 |
+
"loss": 1.0487,
|
1044 |
+
"step": 141
|
1045 |
+
},
|
1046 |
+
{
|
1047 |
+
"epoch": 1.26,
|
1048 |
+
"grad_norm": 0.22894492131909072,
|
1049 |
+
"learning_rate": 0.00015883667026067745,
|
1050 |
+
"loss": 0.9352,
|
1051 |
+
"step": 142
|
1052 |
+
},
|
1053 |
+
{
|
1054 |
+
"epoch": 1.27,
|
1055 |
+
"grad_norm": 0.19145184577172686,
|
1056 |
+
"learning_rate": 0.00015825385655904788,
|
1057 |
+
"loss": 0.8878,
|
1058 |
+
"step": 143
|
1059 |
+
},
|
1060 |
+
{
|
1061 |
+
"epoch": 1.28,
|
1062 |
+
"grad_norm": 0.22544664152936575,
|
1063 |
+
"learning_rate": 0.00015766803221148673,
|
1064 |
+
"loss": 1.0,
|
1065 |
+
"step": 144
|
1066 |
+
},
|
1067 |
+
{
|
1068 |
+
"epoch": 1.29,
|
1069 |
+
"grad_norm": 0.26000661355557114,
|
1070 |
+
"learning_rate": 0.00015707922749426737,
|
1071 |
+
"loss": 0.9339,
|
1072 |
+
"step": 145
|
1073 |
+
},
|
1074 |
+
{
|
1075 |
+
"epoch": 1.3,
|
1076 |
+
"grad_norm": 0.24433845134512236,
|
1077 |
+
"learning_rate": 0.00015648747283769317,
|
1078 |
+
"loss": 0.9474,
|
1079 |
+
"step": 146
|
1080 |
+
},
|
1081 |
+
{
|
1082 |
+
"epoch": 1.31,
|
1083 |
+
"grad_norm": 0.21973931169609887,
|
1084 |
+
"learning_rate": 0.00015589279882452476,
|
1085 |
+
"loss": 0.9357,
|
1086 |
+
"step": 147
|
1087 |
+
},
|
1088 |
+
{
|
1089 |
+
"epoch": 1.32,
|
1090 |
+
"grad_norm": 0.23929008733305812,
|
1091 |
+
"learning_rate": 0.0001552952361883994,
|
1092 |
+
"loss": 0.9985,
|
1093 |
+
"step": 148
|
1094 |
+
},
|
1095 |
+
{
|
1096 |
+
"epoch": 1.33,
|
1097 |
+
"grad_norm": 0.23431856747573573,
|
1098 |
+
"learning_rate": 0.00015469481581224272,
|
1099 |
+
"loss": 0.8913,
|
1100 |
+
"step": 149
|
1101 |
+
},
|
1102 |
+
{
|
1103 |
+
"epoch": 1.34,
|
1104 |
+
"grad_norm": 0.2233543327912565,
|
1105 |
+
"learning_rate": 0.00015409156872667258,
|
1106 |
+
"loss": 0.9877,
|
1107 |
+
"step": 150
|
1108 |
+
},
|
1109 |
+
{
|
1110 |
+
"epoch": 1.34,
|
1111 |
+
"grad_norm": 0.21281207674183256,
|
1112 |
+
"learning_rate": 0.0001534855261083954,
|
1113 |
+
"loss": 0.9071,
|
1114 |
+
"step": 151
|
1115 |
+
},
|
1116 |
+
{
|
1117 |
+
"epoch": 1.35,
|
1118 |
+
"grad_norm": 0.20314832700152685,
|
1119 |
+
"learning_rate": 0.00015287671927859494,
|
1120 |
+
"loss": 0.9373,
|
1121 |
+
"step": 152
|
1122 |
+
},
|
1123 |
+
{
|
1124 |
+
"epoch": 1.36,
|
1125 |
+
"grad_norm": 0.19648565819019825,
|
1126 |
+
"learning_rate": 0.00015226517970131343,
|
1127 |
+
"loss": 0.9469,
|
1128 |
+
"step": 153
|
1129 |
+
},
|
1130 |
+
{
|
1131 |
+
"epoch": 1.37,
|
1132 |
+
"grad_norm": 0.2262428264639853,
|
1133 |
+
"learning_rate": 0.00015165093898182562,
|
1134 |
+
"loss": 1.0066,
|
1135 |
+
"step": 154
|
1136 |
+
},
|
1137 |
+
{
|
1138 |
+
"epoch": 1.38,
|
1139 |
+
"grad_norm": 0.22253433035020442,
|
1140 |
+
"learning_rate": 0.00015103402886500525,
|
1141 |
+
"loss": 0.8875,
|
1142 |
+
"step": 155
|
1143 |
+
},
|
1144 |
+
{
|
1145 |
+
"epoch": 1.39,
|
1146 |
+
"grad_norm": 0.181161648904613,
|
1147 |
+
"learning_rate": 0.00015041448123368455,
|
1148 |
+
"loss": 0.9004,
|
1149 |
+
"step": 156
|
1150 |
+
},
|
1151 |
+
{
|
1152 |
+
"epoch": 1.4,
|
1153 |
+
"grad_norm": 0.20968483802367816,
|
1154 |
+
"learning_rate": 0.00014979232810700637,
|
1155 |
+
"loss": 0.9133,
|
1156 |
+
"step": 157
|
1157 |
+
},
|
1158 |
+
{
|
1159 |
+
"epoch": 1.41,
|
1160 |
+
"grad_norm": 0.20540509271288435,
|
1161 |
+
"learning_rate": 0.0001491676016387694,
|
1162 |
+
"loss": 0.8876,
|
1163 |
+
"step": 158
|
1164 |
+
},
|
1165 |
+
{
|
1166 |
+
"epoch": 1.42,
|
1167 |
+
"grad_norm": 0.18762795731312454,
|
1168 |
+
"learning_rate": 0.00014854033411576659,
|
1169 |
+
"loss": 0.933,
|
1170 |
+
"step": 159
|
1171 |
+
},
|
1172 |
+
{
|
1173 |
+
"epoch": 1.42,
|
1174 |
+
"grad_norm": 0.23223345997338857,
|
1175 |
+
"learning_rate": 0.00014791055795611624,
|
1176 |
+
"loss": 0.9182,
|
1177 |
+
"step": 160
|
1178 |
+
},
|
1179 |
+
{
|
1180 |
+
"epoch": 1.43,
|
1181 |
+
"grad_norm": 0.21932384461027146,
|
1182 |
+
"learning_rate": 0.00014727830570758678,
|
1183 |
+
"loss": 0.9514,
|
1184 |
+
"step": 161
|
1185 |
+
},
|
1186 |
+
{
|
1187 |
+
"epoch": 1.44,
|
1188 |
+
"grad_norm": 0.21819663730951108,
|
1189 |
+
"learning_rate": 0.0001466436100459146,
|
1190 |
+
"loss": 0.9162,
|
1191 |
+
"step": 162
|
1192 |
+
},
|
1193 |
+
{
|
1194 |
+
"epoch": 1.45,
|
1195 |
+
"grad_norm": 0.2325813323476676,
|
1196 |
+
"learning_rate": 0.00014600650377311522,
|
1197 |
+
"loss": 0.9308,
|
1198 |
+
"step": 163
|
1199 |
+
},
|
1200 |
+
{
|
1201 |
+
"epoch": 1.46,
|
1202 |
+
"grad_norm": 0.2568337182939043,
|
1203 |
+
"learning_rate": 0.0001453670198157883,
|
1204 |
+
"loss": 0.9995,
|
1205 |
+
"step": 164
|
1206 |
+
},
|
1207 |
+
{
|
1208 |
+
"epoch": 1.47,
|
1209 |
+
"grad_norm": 0.22578454460723413,
|
1210 |
+
"learning_rate": 0.00014472519122341566,
|
1211 |
+
"loss": 0.9052,
|
1212 |
+
"step": 165
|
1213 |
+
},
|
1214 |
+
{
|
1215 |
+
"epoch": 1.48,
|
1216 |
+
"grad_norm": 0.23564258958796755,
|
1217 |
+
"learning_rate": 0.00014408105116665336,
|
1218 |
+
"loss": 0.9714,
|
1219 |
+
"step": 166
|
1220 |
+
},
|
1221 |
+
{
|
1222 |
+
"epoch": 1.49,
|
1223 |
+
"grad_norm": 0.24266133562839415,
|
1224 |
+
"learning_rate": 0.00014343463293561734,
|
1225 |
+
"loss": 0.9219,
|
1226 |
+
"step": 167
|
1227 |
+
},
|
1228 |
+
{
|
1229 |
+
"epoch": 1.5,
|
1230 |
+
"grad_norm": 0.23472454708184465,
|
1231 |
+
"learning_rate": 0.00014278596993816308,
|
1232 |
+
"loss": 0.8762,
|
1233 |
+
"step": 168
|
1234 |
+
},
|
1235 |
+
{
|
1236 |
+
"epoch": 1.5,
|
1237 |
+
"eval_loss": 1.2197421789169312,
|
1238 |
+
"eval_runtime": 13.2616,
|
1239 |
+
"eval_samples_per_second": 22.622,
|
1240 |
+
"eval_steps_per_second": 2.865,
|
1241 |
+
"step": 168
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 1.5,
|
1245 |
+
"grad_norm": 0.23623633375452713,
|
1246 |
+
"learning_rate": 0.00014213509569815884,
|
1247 |
+
"loss": 0.8809,
|
1248 |
+
"step": 169
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 1.51,
|
1252 |
+
"grad_norm": 0.25344275204523486,
|
1253 |
+
"learning_rate": 0.00014148204385375321,
|
1254 |
+
"loss": 0.7972,
|
1255 |
+
"step": 170
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 1.52,
|
1259 |
+
"grad_norm": 0.23111396119549557,
|
1260 |
+
"learning_rate": 0.0001408268481556366,
|
1261 |
+
"loss": 0.8228,
|
1262 |
+
"step": 171
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 1.53,
|
1266 |
+
"grad_norm": 0.2510618369255398,
|
1267 |
+
"learning_rate": 0.00014016954246529696,
|
1268 |
+
"loss": 0.8849,
|
1269 |
+
"step": 172
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 1.54,
|
1273 |
+
"grad_norm": 0.2764366116622668,
|
1274 |
+
"learning_rate": 0.0001395101607532698,
|
1275 |
+
"loss": 0.8936,
|
1276 |
+
"step": 173
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 1.55,
|
1280 |
+
"grad_norm": 0.24325811719582827,
|
1281 |
+
"learning_rate": 0.00013884873709738257,
|
1282 |
+
"loss": 0.8602,
|
1283 |
+
"step": 174
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 1.56,
|
1287 |
+
"grad_norm": 0.213781513838486,
|
1288 |
+
"learning_rate": 0.00013818530568099327,
|
1289 |
+
"loss": 0.9492,
|
1290 |
+
"step": 175
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 1.57,
|
1294 |
+
"grad_norm": 0.2397396374239057,
|
1295 |
+
"learning_rate": 0.00013751990079122412,
|
1296 |
+
"loss": 1.0499,
|
1297 |
+
"step": 176
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"epoch": 1.58,
|
1301 |
+
"grad_norm": 0.21579907170368723,
|
1302 |
+
"learning_rate": 0.00013685255681718922,
|
1303 |
+
"loss": 0.9438,
|
1304 |
+
"step": 177
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 1.58,
|
1308 |
+
"grad_norm": 0.2359312681928786,
|
1309 |
+
"learning_rate": 0.0001361833082482175,
|
1310 |
+
"loss": 0.9289,
|
1311 |
+
"step": 178
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 1.59,
|
1315 |
+
"grad_norm": 0.2618189093396496,
|
1316 |
+
"learning_rate": 0.0001355121896720703,
|
1317 |
+
"loss": 0.981,
|
1318 |
+
"step": 179
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 1.6,
|
1322 |
+
"grad_norm": 0.20876513773174135,
|
1323 |
+
"learning_rate": 0.00013483923577315348,
|
1324 |
+
"loss": 0.82,
|
1325 |
+
"step": 180
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 1.61,
|
1329 |
+
"grad_norm": 0.22162748553995645,
|
1330 |
+
"learning_rate": 0.00013416448133072526,
|
1331 |
+
"loss": 1.0131,
|
1332 |
+
"step": 181
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 1.62,
|
1336 |
+
"grad_norm": 0.20975549982451164,
|
1337 |
+
"learning_rate": 0.00013348796121709862,
|
1338 |
+
"loss": 0.8763,
|
1339 |
+
"step": 182
|
1340 |
+
},
|
1341 |
+
{
|
1342 |
+
"epoch": 1.63,
|
1343 |
+
"grad_norm": 0.22840397707525473,
|
1344 |
+
"learning_rate": 0.00013280971039583906,
|
1345 |
+
"loss": 0.949,
|
1346 |
+
"step": 183
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 1.64,
|
1350 |
+
"grad_norm": 0.23384636230161737,
|
1351 |
+
"learning_rate": 0.0001321297639199575,
|
1352 |
+
"loss": 0.9567,
|
1353 |
+
"step": 184
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 1.65,
|
1357 |
+
"grad_norm": 0.22905979409902957,
|
1358 |
+
"learning_rate": 0.000131448156930099,
|
1359 |
+
"loss": 0.9153,
|
1360 |
+
"step": 185
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 1.66,
|
1364 |
+
"grad_norm": 0.27620894683694563,
|
1365 |
+
"learning_rate": 0.0001307649246527263,
|
1366 |
+
"loss": 0.8246,
|
1367 |
+
"step": 186
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 1.66,
|
1371 |
+
"grad_norm": 0.23004170633106227,
|
1372 |
+
"learning_rate": 0.0001300801023982995,
|
1373 |
+
"loss": 1.0181,
|
1374 |
+
"step": 187
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 1.67,
|
1378 |
+
"grad_norm": 0.2219849136264378,
|
1379 |
+
"learning_rate": 0.00012939372555945112,
|
1380 |
+
"loss": 0.9535,
|
1381 |
+
"step": 188
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 1.68,
|
1385 |
+
"grad_norm": 0.24458750452490116,
|
1386 |
+
"learning_rate": 0.0001287058296091567,
|
1387 |
+
"loss": 0.8968,
|
1388 |
+
"step": 189
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 1.69,
|
1392 |
+
"grad_norm": 0.2564337740159555,
|
1393 |
+
"learning_rate": 0.00012801645009890195,
|
1394 |
+
"loss": 0.7955,
|
1395 |
+
"step": 190
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 1.7,
|
1399 |
+
"grad_norm": 0.24100850371438767,
|
1400 |
+
"learning_rate": 0.0001273256226568451,
|
1401 |
+
"loss": 0.9235,
|
1402 |
+
"step": 191
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 1.71,
|
1406 |
+
"grad_norm": 0.24757089527873732,
|
1407 |
+
"learning_rate": 0.00012663338298597563,
|
1408 |
+
"loss": 1.007,
|
1409 |
+
"step": 192
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 1.72,
|
1413 |
+
"grad_norm": 0.24701038583742888,
|
1414 |
+
"learning_rate": 0.00012593976686226904,
|
1415 |
+
"loss": 0.9885,
|
1416 |
+
"step": 193
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"epoch": 1.73,
|
1420 |
+
"grad_norm": 0.26373721125634964,
|
1421 |
+
"learning_rate": 0.0001252448101328381,
|
1422 |
+
"loss": 0.8785,
|
1423 |
+
"step": 194
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"epoch": 1.74,
|
1427 |
+
"grad_norm": 0.2227761464470136,
|
1428 |
+
"learning_rate": 0.00012454854871407994,
|
1429 |
+
"loss": 0.8806,
|
1430 |
+
"step": 195
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 1.74,
|
1434 |
+
"grad_norm": 0.2283950634350429,
|
1435 |
+
"learning_rate": 0.00012385101858982005,
|
1436 |
+
"loss": 0.9053,
|
1437 |
+
"step": 196
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 1.74,
|
1441 |
+
"eval_loss": 1.2198154926300049,
|
1442 |
+
"eval_runtime": 13.2208,
|
1443 |
+
"eval_samples_per_second": 22.692,
|
1444 |
+
"eval_steps_per_second": 2.874,
|
1445 |
+
"step": 196
|
1446 |
+
},
|
1447 |
+
{
|
1448 |
+
"epoch": 1.75,
|
1449 |
+
"grad_norm": 0.23406423788354982,
|
1450 |
+
"learning_rate": 0.00012315225580945252,
|
1451 |
+
"loss": 0.9397,
|
1452 |
+
"step": 197
|
1453 |
+
},
|
1454 |
+
{
|
1455 |
+
"epoch": 1.76,
|
1456 |
+
"grad_norm": 0.23807045727443327,
|
1457 |
+
"learning_rate": 0.0001224522964860769,
|
1458 |
+
"loss": 0.9712,
|
1459 |
+
"step": 198
|
1460 |
+
},
|
1461 |
+
{
|
1462 |
+
"epoch": 1.77,
|
1463 |
+
"grad_norm": 0.2463614808838948,
|
1464 |
+
"learning_rate": 0.00012175117679463187,
|
1465 |
+
"loss": 0.8558,
|
1466 |
+
"step": 199
|
1467 |
+
},
|
1468 |
+
{
|
1469 |
+
"epoch": 1.78,
|
1470 |
+
"grad_norm": 0.24737417059302014,
|
1471 |
+
"learning_rate": 0.00012104893297002567,
|
1472 |
+
"loss": 0.9723,
|
1473 |
+
"step": 200
|
1474 |
+
},
|
1475 |
+
{
|
1476 |
+
"epoch": 1.79,
|
1477 |
+
"grad_norm": 0.243750688050595,
|
1478 |
+
"learning_rate": 0.0001203456013052634,
|
1479 |
+
"loss": 0.964,
|
1480 |
+
"step": 201
|
1481 |
+
},
|
1482 |
+
{
|
1483 |
+
"epoch": 1.8,
|
1484 |
+
"grad_norm": 0.24572059557106538,
|
1485 |
+
"learning_rate": 0.00011964121814957137,
|
1486 |
+
"loss": 0.9109,
|
1487 |
+
"step": 202
|
1488 |
+
},
|
1489 |
+
{
|
1490 |
+
"epoch": 1.81,
|
1491 |
+
"grad_norm": 0.24044117903962453,
|
1492 |
+
"learning_rate": 0.00011893581990651848,
|
1493 |
+
"loss": 1.0019,
|
1494 |
+
"step": 203
|
1495 |
+
},
|
1496 |
+
{
|
1497 |
+
"epoch": 1.82,
|
1498 |
+
"grad_norm": 0.2737568489071465,
|
1499 |
+
"learning_rate": 0.00011822944303213486,
|
1500 |
+
"loss": 0.8893,
|
1501 |
+
"step": 204
|
1502 |
+
},
|
1503 |
+
{
|
1504 |
+
"epoch": 1.82,
|
1505 |
+
"grad_norm": 0.24122455882790084,
|
1506 |
+
"learning_rate": 0.00011752212403302784,
|
1507 |
+
"loss": 0.9162,
|
1508 |
+
"step": 205
|
1509 |
+
},
|
1510 |
+
{
|
1511 |
+
"epoch": 1.83,
|
1512 |
+
"grad_norm": 0.28991871401626856,
|
1513 |
+
"learning_rate": 0.00011681389946449504,
|
1514 |
+
"loss": 0.8555,
|
1515 |
+
"step": 206
|
1516 |
+
},
|
1517 |
+
{
|
1518 |
+
"epoch": 1.84,
|
1519 |
+
"grad_norm": 0.23767408810646548,
|
1520 |
+
"learning_rate": 0.00011610480592863531,
|
1521 |
+
"loss": 0.9936,
|
1522 |
+
"step": 207
|
1523 |
+
},
|
1524 |
+
{
|
1525 |
+
"epoch": 1.85,
|
1526 |
+
"grad_norm": 0.22614733706173062,
|
1527 |
+
"learning_rate": 0.00011539488007245702,
|
1528 |
+
"loss": 0.916,
|
1529 |
+
"step": 208
|
1530 |
+
},
|
1531 |
+
{
|
1532 |
+
"epoch": 1.86,
|
1533 |
+
"grad_norm": 0.22471992425846515,
|
1534 |
+
"learning_rate": 0.00011468415858598411,
|
1535 |
+
"loss": 0.8872,
|
1536 |
+
"step": 209
|
1537 |
+
},
|
1538 |
+
{
|
1539 |
+
"epoch": 1.87,
|
1540 |
+
"grad_norm": 0.22675717145909688,
|
1541 |
+
"learning_rate": 0.00011397267820035986,
|
1542 |
+
"loss": 0.8393,
|
1543 |
+
"step": 210
|
1544 |
+
},
|
1545 |
+
{
|
1546 |
+
"epoch": 1.88,
|
1547 |
+
"grad_norm": 0.2727459336483823,
|
1548 |
+
"learning_rate": 0.00011326047568594851,
|
1549 |
+
"loss": 0.8265,
|
1550 |
+
"step": 211
|
1551 |
+
},
|
1552 |
+
{
|
1553 |
+
"epoch": 1.89,
|
1554 |
+
"grad_norm": 0.25216778031670767,
|
1555 |
+
"learning_rate": 0.00011254758785043515,
|
1556 |
+
"loss": 0.9939,
|
1557 |
+
"step": 212
|
1558 |
+
},
|
1559 |
+
{
|
1560 |
+
"epoch": 1.9,
|
1561 |
+
"grad_norm": 0.269147378424304,
|
1562 |
+
"learning_rate": 0.0001118340515369232,
|
1563 |
+
"loss": 0.9102,
|
1564 |
+
"step": 213
|
1565 |
+
},
|
1566 |
+
{
|
1567 |
+
"epoch": 1.91,
|
1568 |
+
"grad_norm": 0.2216178370833471,
|
1569 |
+
"learning_rate": 0.00011111990362203033,
|
1570 |
+
"loss": 0.8778,
|
1571 |
+
"step": 214
|
1572 |
+
},
|
1573 |
+
{
|
1574 |
+
"epoch": 1.91,
|
1575 |
+
"grad_norm": 0.2602474934716497,
|
1576 |
+
"learning_rate": 0.00011040518101398276,
|
1577 |
+
"loss": 0.9454,
|
1578 |
+
"step": 215
|
1579 |
+
},
|
1580 |
+
{
|
1581 |
+
"epoch": 1.92,
|
1582 |
+
"grad_norm": 0.2658635078442998,
|
1583 |
+
"learning_rate": 0.00010968992065070769,
|
1584 |
+
"loss": 0.8098,
|
1585 |
+
"step": 216
|
1586 |
+
},
|
1587 |
+
{
|
1588 |
+
"epoch": 1.93,
|
1589 |
+
"grad_norm": 0.20997905209488962,
|
1590 |
+
"learning_rate": 0.00010897415949792427,
|
1591 |
+
"loss": 0.9318,
|
1592 |
+
"step": 217
|
1593 |
+
},
|
1594 |
+
{
|
1595 |
+
"epoch": 1.94,
|
1596 |
+
"grad_norm": 0.24752453752221557,
|
1597 |
+
"learning_rate": 0.00010825793454723325,
|
1598 |
+
"loss": 0.949,
|
1599 |
+
"step": 218
|
1600 |
+
},
|
1601 |
+
{
|
1602 |
+
"epoch": 1.95,
|
1603 |
+
"grad_norm": 0.255579569750529,
|
1604 |
+
"learning_rate": 0.0001075412828142051,
|
1605 |
+
"loss": 0.915,
|
1606 |
+
"step": 219
|
1607 |
+
},
|
1608 |
+
{
|
1609 |
+
"epoch": 1.96,
|
1610 |
+
"grad_norm": 0.23186981930561867,
|
1611 |
+
"learning_rate": 0.0001068242413364671,
|
1612 |
+
"loss": 0.9132,
|
1613 |
+
"step": 220
|
1614 |
+
},
|
1615 |
+
{
|
1616 |
+
"epoch": 1.97,
|
1617 |
+
"grad_norm": 0.35685140391438824,
|
1618 |
+
"learning_rate": 0.00010610684717178905,
|
1619 |
+
"loss": 0.9398,
|
1620 |
+
"step": 221
|
1621 |
+
},
|
1622 |
+
{
|
1623 |
+
"epoch": 1.98,
|
1624 |
+
"grad_norm": 0.27320389987223703,
|
1625 |
+
"learning_rate": 0.00010538913739616816,
|
1626 |
+
"loss": 0.857,
|
1627 |
+
"step": 222
|
1628 |
+
},
|
1629 |
+
{
|
1630 |
+
"epoch": 1.99,
|
1631 |
+
"grad_norm": 0.2324276771141761,
|
1632 |
+
"learning_rate": 0.00010467114910191289,
|
1633 |
+
"loss": 0.8546,
|
1634 |
+
"step": 223
|
1635 |
+
},
|
1636 |
+
{
|
1637 |
+
"epoch": 1.99,
|
1638 |
+
"grad_norm": 0.22820341349854167,
|
1639 |
+
"learning_rate": 0.00010395291939572593,
|
1640 |
+
"loss": 0.9301,
|
1641 |
+
"step": 224
|
1642 |
+
},
|
1643 |
+
{
|
1644 |
+
"epoch": 1.99,
|
1645 |
+
"eval_loss": 1.2246263027191162,
|
1646 |
+
"eval_runtime": 13.1981,
|
1647 |
+
"eval_samples_per_second": 22.731,
|
1648 |
+
"eval_steps_per_second": 2.879,
|
1649 |
+
"step": 224
|
1650 |
+
},
|
1651 |
+
{
|
1652 |
+
"epoch": 2.0,
|
1653 |
+
"grad_norm": 0.2289800489154315,
|
1654 |
+
"learning_rate": 0.00010323448539678653,
|
1655 |
+
"loss": 0.9922,
|
1656 |
+
"step": 225
|
1657 |
+
},
|
1658 |
+
{
|
1659 |
+
"epoch": 2.01,
|
1660 |
+
"grad_norm": 0.2673353778680862,
|
1661 |
+
"learning_rate": 0.00010251588423483205,
|
1662 |
+
"loss": 0.7779,
|
1663 |
+
"step": 226
|
1664 |
+
},
|
1665 |
+
{
|
1666 |
+
"epoch": 2.02,
|
1667 |
+
"grad_norm": 0.2420933678952559,
|
1668 |
+
"learning_rate": 0.0001017971530482392,
|
1669 |
+
"loss": 0.8044,
|
1670 |
+
"step": 227
|
1671 |
+
},
|
1672 |
+
{
|
1673 |
+
"epoch": 2.03,
|
1674 |
+
"grad_norm": 0.21799264660625498,
|
1675 |
+
"learning_rate": 0.00010107832898210439,
|
1676 |
+
"loss": 0.8773,
|
1677 |
+
"step": 228
|
1678 |
+
},
|
1679 |
+
{
|
1680 |
+
"epoch": 2.04,
|
1681 |
+
"grad_norm": 0.21443255695871016,
|
1682 |
+
"learning_rate": 0.00010035944918632429,
|
1683 |
+
"loss": 0.9031,
|
1684 |
+
"step": 229
|
1685 |
+
},
|
1686 |
+
{
|
1687 |
+
"epoch": 2.05,
|
1688 |
+
"grad_norm": 0.23983734165788242,
|
1689 |
+
"learning_rate": 9.96405508136757e-05,
|
1690 |
+
"loss": 0.9014,
|
1691 |
+
"step": 230
|
1692 |
+
},
|
1693 |
+
{
|
1694 |
+
"epoch": 2.06,
|
1695 |
+
"grad_norm": 0.27915481475799336,
|
1696 |
+
"learning_rate": 9.892167101789564e-05,
|
1697 |
+
"loss": 0.8853,
|
1698 |
+
"step": 231
|
1699 |
+
},
|
1700 |
+
{
|
1701 |
+
"epoch": 2.07,
|
1702 |
+
"grad_norm": 0.2688949371564916,
|
1703 |
+
"learning_rate": 9.820284695176082e-05,
|
1704 |
+
"loss": 0.8452,
|
1705 |
+
"step": 232
|
1706 |
+
},
|
1707 |
+
{
|
1708 |
+
"epoch": 2.07,
|
1709 |
+
"grad_norm": 0.2623278518867105,
|
1710 |
+
"learning_rate": 9.748411576516794e-05,
|
1711 |
+
"loss": 0.8612,
|
1712 |
+
"step": 233
|
1713 |
+
},
|
1714 |
+
{
|
1715 |
+
"epoch": 2.08,
|
1716 |
+
"grad_norm": 0.2710502639103885,
|
1717 |
+
"learning_rate": 9.676551460321349e-05,
|
1718 |
+
"loss": 0.8108,
|
1719 |
+
"step": 234
|
1720 |
+
},
|
1721 |
+
{
|
1722 |
+
"epoch": 2.09,
|
1723 |
+
"grad_norm": 0.282572880285737,
|
1724 |
+
"learning_rate": 9.60470806042741e-05,
|
1725 |
+
"loss": 0.7866,
|
1726 |
+
"step": 235
|
1727 |
+
},
|
1728 |
+
{
|
1729 |
+
"epoch": 2.1,
|
1730 |
+
"grad_norm": 0.2829396962922612,
|
1731 |
+
"learning_rate": 9.532885089808713e-05,
|
1732 |
+
"loss": 0.8557,
|
1733 |
+
"step": 236
|
1734 |
+
},
|
1735 |
+
{
|
1736 |
+
"epoch": 2.11,
|
1737 |
+
"grad_norm": 0.2721172338857335,
|
1738 |
+
"learning_rate": 9.461086260383187e-05,
|
1739 |
+
"loss": 0.7933,
|
1740 |
+
"step": 237
|
1741 |
+
},
|
1742 |
+
{
|
1743 |
+
"epoch": 2.12,
|
1744 |
+
"grad_norm": 0.29736638811364446,
|
1745 |
+
"learning_rate": 9.389315282821097e-05,
|
1746 |
+
"loss": 0.7674,
|
1747 |
+
"step": 238
|
1748 |
+
},
|
1749 |
+
{
|
1750 |
+
"epoch": 2.13,
|
1751 |
+
"grad_norm": 0.28571679920981263,
|
1752 |
+
"learning_rate": 9.317575866353292e-05,
|
1753 |
+
"loss": 0.7442,
|
1754 |
+
"step": 239
|
1755 |
+
},
|
1756 |
+
{
|
1757 |
+
"epoch": 2.14,
|
1758 |
+
"grad_norm": 0.264545167150173,
|
1759 |
+
"learning_rate": 9.245871718579491e-05,
|
1760 |
+
"loss": 0.8505,
|
1761 |
+
"step": 240
|
1762 |
+
},
|
1763 |
+
{
|
1764 |
+
"epoch": 2.15,
|
1765 |
+
"grad_norm": 0.30691085134027757,
|
1766 |
+
"learning_rate": 9.174206545276677e-05,
|
1767 |
+
"loss": 0.7898,
|
1768 |
+
"step": 241
|
1769 |
+
},
|
1770 |
+
{
|
1771 |
+
"epoch": 2.15,
|
1772 |
+
"grad_norm": 0.31375028121981235,
|
1773 |
+
"learning_rate": 9.102584050207578e-05,
|
1774 |
+
"loss": 0.7661,
|
1775 |
+
"step": 242
|
1776 |
+
},
|
1777 |
+
{
|
1778 |
+
"epoch": 2.16,
|
1779 |
+
"grad_norm": 0.28421530221837016,
|
1780 |
+
"learning_rate": 9.031007934929236e-05,
|
1781 |
+
"loss": 0.8328,
|
1782 |
+
"step": 243
|
1783 |
+
},
|
1784 |
+
{
|
1785 |
+
"epoch": 2.17,
|
1786 |
+
"grad_norm": 0.25601367811173414,
|
1787 |
+
"learning_rate": 8.959481898601728e-05,
|
1788 |
+
"loss": 0.8281,
|
1789 |
+
"step": 244
|
1790 |
+
},
|
1791 |
+
{
|
1792 |
+
"epoch": 2.18,
|
1793 |
+
"grad_norm": 0.2983724947729522,
|
1794 |
+
"learning_rate": 8.888009637796968e-05,
|
1795 |
+
"loss": 0.8567,
|
1796 |
+
"step": 245
|
1797 |
+
},
|
1798 |
+
{
|
1799 |
+
"epoch": 2.19,
|
1800 |
+
"grad_norm": 0.2545616786933236,
|
1801 |
+
"learning_rate": 8.81659484630768e-05,
|
1802 |
+
"loss": 0.9151,
|
1803 |
+
"step": 246
|
1804 |
+
},
|
1805 |
+
{
|
1806 |
+
"epoch": 2.2,
|
1807 |
+
"grad_norm": 0.23873712362647942,
|
1808 |
+
"learning_rate": 8.745241214956483e-05,
|
1809 |
+
"loss": 0.8818,
|
1810 |
+
"step": 247
|
1811 |
+
},
|
1812 |
+
{
|
1813 |
+
"epoch": 2.21,
|
1814 |
+
"grad_norm": 0.285331972404065,
|
1815 |
+
"learning_rate": 8.673952431405148e-05,
|
1816 |
+
"loss": 0.7983,
|
1817 |
+
"step": 248
|
1818 |
+
},
|
1819 |
+
{
|
1820 |
+
"epoch": 2.22,
|
1821 |
+
"grad_norm": 0.23897707291689843,
|
1822 |
+
"learning_rate": 8.602732179964017e-05,
|
1823 |
+
"loss": 0.8758,
|
1824 |
+
"step": 249
|
1825 |
+
},
|
1826 |
+
{
|
1827 |
+
"epoch": 2.23,
|
1828 |
+
"grad_norm": 0.2830966091447457,
|
1829 |
+
"learning_rate": 8.531584141401591e-05,
|
1830 |
+
"loss": 0.8714,
|
1831 |
+
"step": 250
|
1832 |
+
},
|
1833 |
+
{
|
1834 |
+
"epoch": 2.23,
|
1835 |
+
"grad_norm": 0.28872599217076506,
|
1836 |
+
"learning_rate": 8.4605119927543e-05,
|
1837 |
+
"loss": 0.8387,
|
1838 |
+
"step": 251
|
1839 |
+
},
|
1840 |
+
{
|
1841 |
+
"epoch": 2.24,
|
1842 |
+
"grad_norm": 0.2652236346400331,
|
1843 |
+
"learning_rate": 8.38951940713647e-05,
|
1844 |
+
"loss": 0.8232,
|
1845 |
+
"step": 252
|
1846 |
+
},
|
1847 |
+
{
|
1848 |
+
"epoch": 2.24,
|
1849 |
+
"eval_loss": 1.2432794570922852,
|
1850 |
+
"eval_runtime": 13.2405,
|
1851 |
+
"eval_samples_per_second": 22.658,
|
1852 |
+
"eval_steps_per_second": 2.87,
|
1853 |
+
"step": 252
|
1854 |
+
},
|
1855 |
+
{
|
1856 |
+
"epoch": 2.25,
|
1857 |
+
"grad_norm": 0.299978013524394,
|
1858 |
+
"learning_rate": 8.318610053550497e-05,
|
1859 |
+
"loss": 0.7321,
|
1860 |
+
"step": 253
|
1861 |
+
},
|
1862 |
+
{
|
1863 |
+
"epoch": 2.26,
|
1864 |
+
"grad_norm": 0.2740002835117391,
|
1865 |
+
"learning_rate": 8.247787596697218e-05,
|
1866 |
+
"loss": 0.7605,
|
1867 |
+
"step": 254
|
1868 |
+
},
|
1869 |
+
{
|
1870 |
+
"epoch": 2.27,
|
1871 |
+
"grad_norm": 0.2848366030132808,
|
1872 |
+
"learning_rate": 8.177055696786516e-05,
|
1873 |
+
"loss": 0.8485,
|
1874 |
+
"step": 255
|
1875 |
+
},
|
1876 |
+
{
|
1877 |
+
"epoch": 2.28,
|
1878 |
+
"grad_norm": 0.24847418856075218,
|
1879 |
+
"learning_rate": 8.106418009348157e-05,
|
1880 |
+
"loss": 0.7557,
|
1881 |
+
"step": 256
|
1882 |
+
},
|
1883 |
+
{
|
1884 |
+
"epoch": 2.29,
|
1885 |
+
"grad_norm": 0.33515508602624905,
|
1886 |
+
"learning_rate": 8.035878185042868e-05,
|
1887 |
+
"loss": 0.8015,
|
1888 |
+
"step": 257
|
1889 |
+
},
|
1890 |
+
{
|
1891 |
+
"epoch": 2.3,
|
1892 |
+
"grad_norm": 0.2905943721096322,
|
1893 |
+
"learning_rate": 7.965439869473664e-05,
|
1894 |
+
"loss": 0.8457,
|
1895 |
+
"step": 258
|
1896 |
+
},
|
1897 |
+
{
|
1898 |
+
"epoch": 2.31,
|
1899 |
+
"grad_norm": 0.3140679719552616,
|
1900 |
+
"learning_rate": 7.895106702997437e-05,
|
1901 |
+
"loss": 0.8559,
|
1902 |
+
"step": 259
|
1903 |
+
},
|
1904 |
+
{
|
1905 |
+
"epoch": 2.31,
|
1906 |
+
"grad_norm": 0.29745105018138573,
|
1907 |
+
"learning_rate": 7.824882320536814e-05,
|
1908 |
+
"loss": 0.7453,
|
1909 |
+
"step": 260
|
1910 |
+
},
|
1911 |
+
{
|
1912 |
+
"epoch": 2.32,
|
1913 |
+
"grad_norm": 0.29818631731197365,
|
1914 |
+
"learning_rate": 7.754770351392311e-05,
|
1915 |
+
"loss": 0.8354,
|
1916 |
+
"step": 261
|
1917 |
+
},
|
1918 |
+
{
|
1919 |
+
"epoch": 2.33,
|
1920 |
+
"grad_norm": 0.24721488944366407,
|
1921 |
+
"learning_rate": 7.684774419054747e-05,
|
1922 |
+
"loss": 0.7755,
|
1923 |
+
"step": 262
|
1924 |
+
},
|
1925 |
+
{
|
1926 |
+
"epoch": 2.34,
|
1927 |
+
"grad_norm": 0.31210442779019465,
|
1928 |
+
"learning_rate": 7.614898141017996e-05,
|
1929 |
+
"loss": 0.7208,
|
1930 |
+
"step": 263
|
1931 |
+
},
|
1932 |
+
{
|
1933 |
+
"epoch": 2.35,
|
1934 |
+
"grad_norm": 0.2873220240109992,
|
1935 |
+
"learning_rate": 7.54514512859201e-05,
|
1936 |
+
"loss": 0.7548,
|
1937 |
+
"step": 264
|
1938 |
+
},
|
1939 |
+
{
|
1940 |
+
"epoch": 2.36,
|
1941 |
+
"grad_norm": 0.3006634171776217,
|
1942 |
+
"learning_rate": 7.475518986716194e-05,
|
1943 |
+
"loss": 0.7566,
|
1944 |
+
"step": 265
|
1945 |
+
},
|
1946 |
+
{
|
1947 |
+
"epoch": 2.37,
|
1948 |
+
"grad_norm": 0.2799417613336026,
|
1949 |
+
"learning_rate": 7.406023313773097e-05,
|
1950 |
+
"loss": 0.727,
|
1951 |
+
"step": 266
|
1952 |
+
},
|
1953 |
+
{
|
1954 |
+
"epoch": 2.38,
|
1955 |
+
"grad_norm": 0.2451761866231664,
|
1956 |
+
"learning_rate": 7.336661701402439e-05,
|
1957 |
+
"loss": 0.9641,
|
1958 |
+
"step": 267
|
1959 |
+
},
|
1960 |
+
{
|
1961 |
+
"epoch": 2.39,
|
1962 |
+
"grad_norm": 0.305202611125298,
|
1963 |
+
"learning_rate": 7.267437734315492e-05,
|
1964 |
+
"loss": 0.7891,
|
1965 |
+
"step": 268
|
1966 |
+
},
|
1967 |
+
{
|
1968 |
+
"epoch": 2.39,
|
1969 |
+
"grad_norm": 0.29107717848747816,
|
1970 |
+
"learning_rate": 7.198354990109805e-05,
|
1971 |
+
"loss": 0.9032,
|
1972 |
+
"step": 269
|
1973 |
+
},
|
1974 |
+
{
|
1975 |
+
"epoch": 2.4,
|
1976 |
+
"grad_norm": 0.2688898665176787,
|
1977 |
+
"learning_rate": 7.129417039084333e-05,
|
1978 |
+
"loss": 0.8416,
|
1979 |
+
"step": 270
|
1980 |
+
},
|
1981 |
+
{
|
1982 |
+
"epoch": 2.41,
|
1983 |
+
"grad_norm": 0.2814206029778395,
|
1984 |
+
"learning_rate": 7.060627444054893e-05,
|
1985 |
+
"loss": 0.8443,
|
1986 |
+
"step": 271
|
1987 |
+
},
|
1988 |
+
{
|
1989 |
+
"epoch": 2.42,
|
1990 |
+
"grad_norm": 0.2862094867555512,
|
1991 |
+
"learning_rate": 6.99198976017005e-05,
|
1992 |
+
"loss": 0.8271,
|
1993 |
+
"step": 272
|
1994 |
+
},
|
1995 |
+
{
|
1996 |
+
"epoch": 2.43,
|
1997 |
+
"grad_norm": 0.3214647340394826,
|
1998 |
+
"learning_rate": 6.923507534727373e-05,
|
1999 |
+
"loss": 0.7793,
|
2000 |
+
"step": 273
|
2001 |
+
},
|
2002 |
+
{
|
2003 |
+
"epoch": 2.44,
|
2004 |
+
"grad_norm": 0.3033659714564417,
|
2005 |
+
"learning_rate": 6.855184306990106e-05,
|
2006 |
+
"loss": 0.7856,
|
2007 |
+
"step": 274
|
2008 |
+
},
|
2009 |
+
{
|
2010 |
+
"epoch": 2.45,
|
2011 |
+
"grad_norm": 0.3024382342577774,
|
2012 |
+
"learning_rate": 6.78702360800425e-05,
|
2013 |
+
"loss": 0.8633,
|
2014 |
+
"step": 275
|
2015 |
+
},
|
2016 |
+
{
|
2017 |
+
"epoch": 2.46,
|
2018 |
+
"grad_norm": 0.25803598196729505,
|
2019 |
+
"learning_rate": 6.719028960416098e-05,
|
2020 |
+
"loss": 0.8428,
|
2021 |
+
"step": 276
|
2022 |
+
},
|
2023 |
+
{
|
2024 |
+
"epoch": 2.47,
|
2025 |
+
"grad_norm": 0.35469202971401803,
|
2026 |
+
"learning_rate": 6.651203878290139e-05,
|
2027 |
+
"loss": 0.8665,
|
2028 |
+
"step": 277
|
2029 |
+
},
|
2030 |
+
{
|
2031 |
+
"epoch": 2.47,
|
2032 |
+
"grad_norm": 0.3122516837597691,
|
2033 |
+
"learning_rate": 6.583551866927475e-05,
|
2034 |
+
"loss": 0.8787,
|
2035 |
+
"step": 278
|
2036 |
+
},
|
2037 |
+
{
|
2038 |
+
"epoch": 2.48,
|
2039 |
+
"grad_norm": 0.3305470786367901,
|
2040 |
+
"learning_rate": 6.516076422684654e-05,
|
2041 |
+
"loss": 0.8765,
|
2042 |
+
"step": 279
|
2043 |
+
},
|
2044 |
+
{
|
2045 |
+
"epoch": 2.49,
|
2046 |
+
"grad_norm": 0.3324622666488467,
|
2047 |
+
"learning_rate": 6.448781032792972e-05,
|
2048 |
+
"loss": 0.8318,
|
2049 |
+
"step": 280
|
2050 |
+
},
|
2051 |
+
{
|
2052 |
+
"epoch": 2.49,
|
2053 |
+
"eval_loss": 1.2546111345291138,
|
2054 |
+
"eval_runtime": 13.2379,
|
2055 |
+
"eval_samples_per_second": 22.662,
|
2056 |
+
"eval_steps_per_second": 2.871,
|
2057 |
+
"step": 280
|
2058 |
+
},
|
2059 |
+
{
|
2060 |
+
"epoch": 2.5,
|
2061 |
+
"grad_norm": 0.342341713579355,
|
2062 |
+
"learning_rate": 6.381669175178248e-05,
|
2063 |
+
"loss": 0.9517,
|
2064 |
+
"step": 281
|
2065 |
+
},
|
2066 |
+
{
|
2067 |
+
"epoch": 2.51,
|
2068 |
+
"grad_norm": 0.33913458352374665,
|
2069 |
+
"learning_rate": 6.31474431828108e-05,
|
2070 |
+
"loss": 0.8564,
|
2071 |
+
"step": 282
|
2072 |
+
},
|
2073 |
+
{
|
2074 |
+
"epoch": 2.52,
|
2075 |
+
"grad_norm": 0.30528689383480295,
|
2076 |
+
"learning_rate": 6.248009920877592e-05,
|
2077 |
+
"loss": 0.8199,
|
2078 |
+
"step": 283
|
2079 |
+
},
|
2080 |
+
{
|
2081 |
+
"epoch": 2.53,
|
2082 |
+
"grad_norm": 0.29698648367254743,
|
2083 |
+
"learning_rate": 6.181469431900672e-05,
|
2084 |
+
"loss": 0.785,
|
2085 |
+
"step": 284
|
2086 |
+
},
|
2087 |
+
{
|
2088 |
+
"epoch": 2.54,
|
2089 |
+
"grad_norm": 0.32239262939282626,
|
2090 |
+
"learning_rate": 6.115126290261745e-05,
|
2091 |
+
"loss": 0.7794,
|
2092 |
+
"step": 285
|
2093 |
+
},
|
2094 |
+
{
|
2095 |
+
"epoch": 2.55,
|
2096 |
+
"grad_norm": 0.2694595905080167,
|
2097 |
+
"learning_rate": 6.048983924673022e-05,
|
2098 |
+
"loss": 0.8056,
|
2099 |
+
"step": 286
|
2100 |
+
},
|
2101 |
+
{
|
2102 |
+
"epoch": 2.55,
|
2103 |
+
"grad_norm": 0.3045496751154443,
|
2104 |
+
"learning_rate": 5.983045753470308e-05,
|
2105 |
+
"loss": 0.8164,
|
2106 |
+
"step": 287
|
2107 |
+
},
|
2108 |
+
{
|
2109 |
+
"epoch": 2.56,
|
2110 |
+
"grad_norm": 0.2927868214627918,
|
2111 |
+
"learning_rate": 5.917315184436345e-05,
|
2112 |
+
"loss": 0.8358,
|
2113 |
+
"step": 288
|
2114 |
+
},
|
2115 |
+
{
|
2116 |
+
"epoch": 2.57,
|
2117 |
+
"grad_norm": 0.2931914055644858,
|
2118 |
+
"learning_rate": 5.851795614624682e-05,
|
2119 |
+
"loss": 0.8011,
|
2120 |
+
"step": 289
|
2121 |
+
},
|
2122 |
+
{
|
2123 |
+
"epoch": 2.58,
|
2124 |
+
"grad_norm": 0.3158716819379082,
|
2125 |
+
"learning_rate": 5.786490430184115e-05,
|
2126 |
+
"loss": 0.8332,
|
2127 |
+
"step": 290
|
2128 |
+
},
|
2129 |
+
{
|
2130 |
+
"epoch": 2.59,
|
2131 |
+
"grad_norm": 0.3482519147352008,
|
2132 |
+
"learning_rate": 5.72140300618369e-05,
|
2133 |
+
"loss": 0.7621,
|
2134 |
+
"step": 291
|
2135 |
+
},
|
2136 |
+
{
|
2137 |
+
"epoch": 2.6,
|
2138 |
+
"grad_norm": 0.28652801822050894,
|
2139 |
+
"learning_rate": 5.656536706438267e-05,
|
2140 |
+
"loss": 0.77,
|
2141 |
+
"step": 292
|
2142 |
+
},
|
2143 |
+
{
|
2144 |
+
"epoch": 2.61,
|
2145 |
+
"grad_norm": 0.29691290613407717,
|
2146 |
+
"learning_rate": 5.591894883334667e-05,
|
2147 |
+
"loss": 0.9394,
|
2148 |
+
"step": 293
|
2149 |
+
},
|
2150 |
+
{
|
2151 |
+
"epoch": 2.62,
|
2152 |
+
"grad_norm": 0.26699581966985203,
|
2153 |
+
"learning_rate": 5.5274808776584367e-05,
|
2154 |
+
"loss": 0.7918,
|
2155 |
+
"step": 294
|
2156 |
+
},
|
2157 |
+
{
|
2158 |
+
"epoch": 2.63,
|
2159 |
+
"grad_norm": 0.2926923719762685,
|
2160 |
+
"learning_rate": 5.463298018421171e-05,
|
2161 |
+
"loss": 0.8723,
|
2162 |
+
"step": 295
|
2163 |
+
},
|
2164 |
+
{
|
2165 |
+
"epoch": 2.64,
|
2166 |
+
"grad_norm": 0.3403087263187063,
|
2167 |
+
"learning_rate": 5.399349622688479e-05,
|
2168 |
+
"loss": 0.8097,
|
2169 |
+
"step": 296
|
2170 |
+
},
|
2171 |
+
{
|
2172 |
+
"epoch": 2.64,
|
2173 |
+
"grad_norm": 0.34261233464532476,
|
2174 |
+
"learning_rate": 5.335638995408545e-05,
|
2175 |
+
"loss": 0.9032,
|
2176 |
+
"step": 297
|
2177 |
+
},
|
2178 |
+
{
|
2179 |
+
"epoch": 2.65,
|
2180 |
+
"grad_norm": 0.31315234759634086,
|
2181 |
+
"learning_rate": 5.272169429241325e-05,
|
2182 |
+
"loss": 0.82,
|
2183 |
+
"step": 298
|
2184 |
+
},
|
2185 |
+
{
|
2186 |
+
"epoch": 2.66,
|
2187 |
+
"grad_norm": 0.3179759425444047,
|
2188 |
+
"learning_rate": 5.208944204388377e-05,
|
2189 |
+
"loss": 0.8864,
|
2190 |
+
"step": 299
|
2191 |
+
},
|
2192 |
+
{
|
2193 |
+
"epoch": 2.67,
|
2194 |
+
"grad_norm": 0.3121296356843828,
|
2195 |
+
"learning_rate": 5.145966588423341e-05,
|
2196 |
+
"loss": 0.8258,
|
2197 |
+
"step": 300
|
2198 |
+
},
|
2199 |
+
{
|
2200 |
+
"epoch": 2.68,
|
2201 |
+
"grad_norm": 0.268436849924173,
|
2202 |
+
"learning_rate": 5.0832398361230596e-05,
|
2203 |
+
"loss": 0.8906,
|
2204 |
+
"step": 301
|
2205 |
+
},
|
2206 |
+
{
|
2207 |
+
"epoch": 2.69,
|
2208 |
+
"grad_norm": 0.2961161602467319,
|
2209 |
+
"learning_rate": 5.020767189299369e-05,
|
2210 |
+
"loss": 0.8828,
|
2211 |
+
"step": 302
|
2212 |
+
},
|
2213 |
+
{
|
2214 |
+
"epoch": 2.7,
|
2215 |
+
"grad_norm": 0.27743957099992345,
|
2216 |
+
"learning_rate": 4.9585518766315496e-05,
|
2217 |
+
"loss": 0.8251,
|
2218 |
+
"step": 303
|
2219 |
+
},
|
2220 |
+
{
|
2221 |
+
"epoch": 2.71,
|
2222 |
+
"grad_norm": 0.2949909861852426,
|
2223 |
+
"learning_rate": 4.896597113499479e-05,
|
2224 |
+
"loss": 0.7911,
|
2225 |
+
"step": 304
|
2226 |
+
},
|
2227 |
+
{
|
2228 |
+
"epoch": 2.72,
|
2229 |
+
"grad_norm": 0.3161115451278363,
|
2230 |
+
"learning_rate": 4.834906101817438e-05,
|
2231 |
+
"loss": 0.8157,
|
2232 |
+
"step": 305
|
2233 |
+
},
|
2234 |
+
{
|
2235 |
+
"epoch": 2.72,
|
2236 |
+
"grad_norm": 0.28720077046065867,
|
2237 |
+
"learning_rate": 4.773482029868657e-05,
|
2238 |
+
"loss": 0.82,
|
2239 |
+
"step": 306
|
2240 |
+
},
|
2241 |
+
{
|
2242 |
+
"epoch": 2.73,
|
2243 |
+
"grad_norm": 0.4045319357608716,
|
2244 |
+
"learning_rate": 4.712328072140505e-05,
|
2245 |
+
"loss": 0.8414,
|
2246 |
+
"step": 307
|
2247 |
+
},
|
2248 |
+
{
|
2249 |
+
"epoch": 2.74,
|
2250 |
+
"grad_norm": 0.3070232288390269,
|
2251 |
+
"learning_rate": 4.651447389160458e-05,
|
2252 |
+
"loss": 0.8427,
|
2253 |
+
"step": 308
|
2254 |
+
},
|
2255 |
+
{
|
2256 |
+
"epoch": 2.74,
|
2257 |
+
"eval_loss": 1.2574400901794434,
|
2258 |
+
"eval_runtime": 13.2473,
|
2259 |
+
"eval_samples_per_second": 22.646,
|
2260 |
+
"eval_steps_per_second": 2.869,
|
2261 |
+
"step": 308
|
2262 |
+
},
|
2263 |
+
{
|
2264 |
+
"epoch": 2.75,
|
2265 |
+
"grad_norm": 0.3214782806968351,
|
2266 |
+
"learning_rate": 4.5908431273327436e-05,
|
2267 |
+
"loss": 0.8469,
|
2268 |
+
"step": 309
|
2269 |
+
},
|
2270 |
+
{
|
2271 |
+
"epoch": 2.76,
|
2272 |
+
"grad_norm": 0.24241410698156174,
|
2273 |
+
"learning_rate": 4.530518418775733e-05,
|
2274 |
+
"loss": 0.8346,
|
2275 |
+
"step": 310
|
2276 |
+
},
|
2277 |
+
{
|
2278 |
+
"epoch": 2.77,
|
2279 |
+
"grad_norm": 0.3303263594210879,
|
2280 |
+
"learning_rate": 4.470476381160065e-05,
|
2281 |
+
"loss": 0.8298,
|
2282 |
+
"step": 311
|
2283 |
+
},
|
2284 |
+
{
|
2285 |
+
"epoch": 2.78,
|
2286 |
+
"grad_norm": 0.30711900849760865,
|
2287 |
+
"learning_rate": 4.4107201175475275e-05,
|
2288 |
+
"loss": 0.789,
|
2289 |
+
"step": 312
|
2290 |
+
},
|
2291 |
+
{
|
2292 |
+
"epoch": 2.79,
|
2293 |
+
"grad_norm": 0.2954465859389713,
|
2294 |
+
"learning_rate": 4.351252716230685e-05,
|
2295 |
+
"loss": 0.8029,
|
2296 |
+
"step": 313
|
2297 |
+
},
|
2298 |
+
{
|
2299 |
+
"epoch": 2.8,
|
2300 |
+
"grad_norm": 0.29925087091531116,
|
2301 |
+
"learning_rate": 4.292077250573266e-05,
|
2302 |
+
"loss": 0.8633,
|
2303 |
+
"step": 314
|
2304 |
+
},
|
2305 |
+
{
|
2306 |
+
"epoch": 2.8,
|
2307 |
+
"grad_norm": 0.3177611223775825,
|
2308 |
+
"learning_rate": 4.2331967788513295e-05,
|
2309 |
+
"loss": 0.76,
|
2310 |
+
"step": 315
|
2311 |
+
},
|
2312 |
+
{
|
2313 |
+
"epoch": 2.81,
|
2314 |
+
"grad_norm": 0.28642407848269513,
|
2315 |
+
"learning_rate": 4.174614344095213e-05,
|
2316 |
+
"loss": 0.823,
|
2317 |
+
"step": 316
|
2318 |
+
},
|
2319 |
+
{
|
2320 |
+
"epoch": 2.82,
|
2321 |
+
"grad_norm": 0.3243224656005062,
|
2322 |
+
"learning_rate": 4.116332973932256e-05,
|
2323 |
+
"loss": 0.7831,
|
2324 |
+
"step": 317
|
2325 |
+
},
|
2326 |
+
{
|
2327 |
+
"epoch": 2.83,
|
2328 |
+
"grad_norm": 0.34877334027822726,
|
2329 |
+
"learning_rate": 4.058355680430337e-05,
|
2330 |
+
"loss": 0.899,
|
2331 |
+
"step": 318
|
2332 |
+
},
|
2333 |
+
{
|
2334 |
+
"epoch": 2.84,
|
2335 |
+
"grad_norm": 0.28640325479143114,
|
2336 |
+
"learning_rate": 4.0006854599421926e-05,
|
2337 |
+
"loss": 0.8292,
|
2338 |
+
"step": 319
|
2339 |
+
},
|
2340 |
+
{
|
2341 |
+
"epoch": 2.85,
|
2342 |
+
"grad_norm": 0.3135316628014535,
|
2343 |
+
"learning_rate": 3.943325292950579e-05,
|
2344 |
+
"loss": 0.8731,
|
2345 |
+
"step": 320
|
2346 |
+
},
|
2347 |
+
{
|
2348 |
+
"epoch": 2.86,
|
2349 |
+
"grad_norm": 0.2949970604257085,
|
2350 |
+
"learning_rate": 3.886278143914219e-05,
|
2351 |
+
"loss": 0.8402,
|
2352 |
+
"step": 321
|
2353 |
+
},
|
2354 |
+
{
|
2355 |
+
"epoch": 2.87,
|
2356 |
+
"grad_norm": 0.30057896586780075,
|
2357 |
+
"learning_rate": 3.829546961114607e-05,
|
2358 |
+
"loss": 0.7713,
|
2359 |
+
"step": 322
|
2360 |
+
},
|
2361 |
+
{
|
2362 |
+
"epoch": 2.88,
|
2363 |
+
"grad_norm": 0.3558574270285126,
|
2364 |
+
"learning_rate": 3.773134676503629e-05,
|
2365 |
+
"loss": 0.8435,
|
2366 |
+
"step": 323
|
2367 |
+
},
|
2368 |
+
{
|
2369 |
+
"epoch": 2.88,
|
2370 |
+
"grad_norm": 0.29115288332943334,
|
2371 |
+
"learning_rate": 3.7170442055520415e-05,
|
2372 |
+
"loss": 0.9022,
|
2373 |
+
"step": 324
|
2374 |
+
},
|
2375 |
+
{
|
2376 |
+
"epoch": 2.89,
|
2377 |
+
"grad_norm": 0.3192074718527619,
|
2378 |
+
"learning_rate": 3.661278447098789e-05,
|
2379 |
+
"loss": 0.7662,
|
2380 |
+
"step": 325
|
2381 |
+
},
|
2382 |
+
{
|
2383 |
+
"epoch": 2.9,
|
2384 |
+
"grad_norm": 0.33335742888185405,
|
2385 |
+
"learning_rate": 3.605840283201195e-05,
|
2386 |
+
"loss": 0.8111,
|
2387 |
+
"step": 326
|
2388 |
+
},
|
2389 |
+
{
|
2390 |
+
"epoch": 2.91,
|
2391 |
+
"grad_norm": 0.29748212071395186,
|
2392 |
+
"learning_rate": 3.550732578986006e-05,
|
2393 |
+
"loss": 0.7543,
|
2394 |
+
"step": 327
|
2395 |
+
},
|
2396 |
+
{
|
2397 |
+
"epoch": 2.92,
|
2398 |
+
"grad_norm": 0.3680409192627914,
|
2399 |
+
"learning_rate": 3.495958182501325e-05,
|
2400 |
+
"loss": 0.8124,
|
2401 |
+
"step": 328
|
2402 |
+
},
|
2403 |
+
{
|
2404 |
+
"epoch": 2.93,
|
2405 |
+
"grad_norm": 0.27807302364345643,
|
2406 |
+
"learning_rate": 3.441519924569408e-05,
|
2407 |
+
"loss": 0.7856,
|
2408 |
+
"step": 329
|
2409 |
+
},
|
2410 |
+
{
|
2411 |
+
"epoch": 2.94,
|
2412 |
+
"grad_norm": 0.3050855823733691,
|
2413 |
+
"learning_rate": 3.387420618640379e-05,
|
2414 |
+
"loss": 0.8506,
|
2415 |
+
"step": 330
|
2416 |
+
},
|
2417 |
+
{
|
2418 |
+
"epoch": 2.95,
|
2419 |
+
"grad_norm": 0.3322620263029238,
|
2420 |
+
"learning_rate": 3.3336630606468134e-05,
|
2421 |
+
"loss": 0.8771,
|
2422 |
+
"step": 331
|
2423 |
+
},
|
2424 |
+
{
|
2425 |
+
"epoch": 2.96,
|
2426 |
+
"grad_norm": 0.3112008867427982,
|
2427 |
+
"learning_rate": 3.280250028859248e-05,
|
2428 |
+
"loss": 0.7785,
|
2429 |
+
"step": 332
|
2430 |
+
},
|
2431 |
+
{
|
2432 |
+
"epoch": 2.96,
|
2433 |
+
"grad_norm": 0.2839548329095365,
|
2434 |
+
"learning_rate": 3.227184283742591e-05,
|
2435 |
+
"loss": 0.9153,
|
2436 |
+
"step": 333
|
2437 |
+
},
|
2438 |
+
{
|
2439 |
+
"epoch": 2.97,
|
2440 |
+
"grad_norm": 0.34615397822650606,
|
2441 |
+
"learning_rate": 3.174468567813461e-05,
|
2442 |
+
"loss": 0.7753,
|
2443 |
+
"step": 334
|
2444 |
+
},
|
2445 |
+
{
|
2446 |
+
"epoch": 2.98,
|
2447 |
+
"grad_norm": 0.34691866307772695,
|
2448 |
+
"learning_rate": 3.122105605498442e-05,
|
2449 |
+
"loss": 0.851,
|
2450 |
+
"step": 335
|
2451 |
+
},
|
2452 |
+
{
|
2453 |
+
"epoch": 2.99,
|
2454 |
+
"grad_norm": 0.296369624391198,
|
2455 |
+
"learning_rate": 3.070098102993302e-05,
|
2456 |
+
"loss": 0.8572,
|
2457 |
+
"step": 336
|
2458 |
+
},
|
2459 |
+
{
|
2460 |
+
"epoch": 2.99,
|
2461 |
+
"eval_loss": 1.2511259317398071,
|
2462 |
+
"eval_runtime": 13.2202,
|
2463 |
+
"eval_samples_per_second": 22.692,
|
2464 |
+
"eval_steps_per_second": 2.874,
|
2465 |
+
"step": 336
|
2466 |
+
}
|
2467 |
+
],
|
2468 |
+
"logging_steps": 1,
|
2469 |
+
"max_steps": 448,
|
2470 |
+
"num_input_tokens_seen": 0,
|
2471 |
+
"num_train_epochs": 4,
|
2472 |
+
"save_steps": 112,
|
2473 |
+
"total_flos": 4.005448726012232e+17,
|
2474 |
+
"train_batch_size": 2,
|
2475 |
+
"trial_name": null,
|
2476 |
+
"trial_params": null
|
2477 |
+
}
|
checkpoint-336/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d400c16f982c36b10268ff7e69e878c44d11f5fb692a61770a8e1efb50d4491c
|
3 |
+
size 6776
|
checkpoint-336/zero_to_fp32.py
ADDED
@@ -0,0 +1,592 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _has_callable(obj, fn):
|
252 |
+
attr = getattr(obj, fn, None)
|
253 |
+
return callable(attr)
|
254 |
+
|
255 |
+
|
256 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
257 |
+
param_shapes = zero_model_states[0].param_shapes
|
258 |
+
|
259 |
+
# Reconstruction protocol:
|
260 |
+
#
|
261 |
+
# XXX: document this
|
262 |
+
|
263 |
+
if debug:
|
264 |
+
for i in range(world_size):
|
265 |
+
for j in range(len(fp32_flat_groups[0])):
|
266 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
267 |
+
|
268 |
+
# XXX: memory usage doubles here (zero2)
|
269 |
+
num_param_groups = len(fp32_flat_groups[0])
|
270 |
+
merged_single_partition_of_fp32_groups = []
|
271 |
+
for i in range(num_param_groups):
|
272 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
273 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
274 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
275 |
+
avail_numel = sum(
|
276 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
277 |
+
|
278 |
+
if debug:
|
279 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
280 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
281 |
+
# not asserting if there is a mismatch due to possible padding
|
282 |
+
print(f"Have {avail_numel} numels to process.")
|
283 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
284 |
+
|
285 |
+
# params
|
286 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
287 |
+
# out-of-core computing solution
|
288 |
+
total_numel = 0
|
289 |
+
total_params = 0
|
290 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
291 |
+
offset = 0
|
292 |
+
avail_numel = full_single_fp32_vector.numel()
|
293 |
+
for name, shape in shapes.items():
|
294 |
+
|
295 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
296 |
+
total_numel += unpartitioned_numel
|
297 |
+
total_params += 1
|
298 |
+
|
299 |
+
if debug:
|
300 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
301 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
302 |
+
offset += unpartitioned_numel
|
303 |
+
|
304 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
305 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
306 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
307 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
308 |
+
align_to = 2 * world_size
|
309 |
+
|
310 |
+
def zero2_align(x):
|
311 |
+
return align_to * math.ceil(x / align_to)
|
312 |
+
|
313 |
+
if debug:
|
314 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
315 |
+
|
316 |
+
offset = zero2_align(offset)
|
317 |
+
avail_numel = zero2_align(avail_numel)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
# Sanity check
|
323 |
+
if offset != avail_numel:
|
324 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
325 |
+
|
326 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
327 |
+
|
328 |
+
|
329 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
330 |
+
state_dict = OrderedDict()
|
331 |
+
|
332 |
+
# buffers
|
333 |
+
buffers = zero_model_states[0].buffers
|
334 |
+
state_dict.update(buffers)
|
335 |
+
if debug:
|
336 |
+
print(f"added {len(buffers)} buffers")
|
337 |
+
|
338 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
339 |
+
|
340 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
341 |
+
|
342 |
+
# recover shared parameters
|
343 |
+
for pair in zero_model_states[0].shared_params:
|
344 |
+
if pair[1] in state_dict:
|
345 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
346 |
+
|
347 |
+
return state_dict
|
348 |
+
|
349 |
+
|
350 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
351 |
+
remainder = unpartitioned_numel % world_size
|
352 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
353 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
354 |
+
return partitioned_numel, padding_numel
|
355 |
+
|
356 |
+
|
357 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
358 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
359 |
+
return
|
360 |
+
|
361 |
+
if debug:
|
362 |
+
for i in range(world_size):
|
363 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
364 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
365 |
+
|
366 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
367 |
+
wanted_params = len(frozen_param_shapes)
|
368 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
369 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
370 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
371 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
372 |
+
|
373 |
+
total_params = 0
|
374 |
+
total_numel = 0
|
375 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
376 |
+
total_params += 1
|
377 |
+
unpartitioned_numel = shape.numel()
|
378 |
+
total_numel += unpartitioned_numel
|
379 |
+
|
380 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
381 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
382 |
+
|
383 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
384 |
+
|
385 |
+
if debug:
|
386 |
+
print(
|
387 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
388 |
+
)
|
389 |
+
|
390 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
391 |
+
|
392 |
+
|
393 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
394 |
+
param_shapes = zero_model_states[0].param_shapes
|
395 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
396 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
397 |
+
# param, re-consolidating each param, while dealing with padding if any
|
398 |
+
|
399 |
+
# merge list of dicts, preserving order
|
400 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
401 |
+
|
402 |
+
if debug:
|
403 |
+
for i in range(world_size):
|
404 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
405 |
+
|
406 |
+
wanted_params = len(param_shapes)
|
407 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
408 |
+
# not asserting if there is a mismatch due to possible padding
|
409 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
410 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
411 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
412 |
+
|
413 |
+
# params
|
414 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
415 |
+
# out-of-core computing solution
|
416 |
+
offset = 0
|
417 |
+
total_numel = 0
|
418 |
+
total_params = 0
|
419 |
+
for name, shape in param_shapes.items():
|
420 |
+
|
421 |
+
unpartitioned_numel = shape.numel()
|
422 |
+
total_numel += unpartitioned_numel
|
423 |
+
total_params += 1
|
424 |
+
|
425 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
426 |
+
|
427 |
+
if debug:
|
428 |
+
print(
|
429 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
430 |
+
)
|
431 |
+
|
432 |
+
# XXX: memory usage doubles here
|
433 |
+
state_dict[name] = torch.cat(
|
434 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
435 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
436 |
+
offset += partitioned_numel
|
437 |
+
|
438 |
+
offset *= world_size
|
439 |
+
|
440 |
+
# Sanity check
|
441 |
+
if offset != avail_numel:
|
442 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
443 |
+
|
444 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
445 |
+
|
446 |
+
|
447 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
448 |
+
state_dict = OrderedDict()
|
449 |
+
|
450 |
+
# buffers
|
451 |
+
buffers = zero_model_states[0].buffers
|
452 |
+
state_dict.update(buffers)
|
453 |
+
if debug:
|
454 |
+
print(f"added {len(buffers)} buffers")
|
455 |
+
|
456 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
457 |
+
|
458 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
459 |
+
|
460 |
+
# recover shared parameters
|
461 |
+
for pair in zero_model_states[0].shared_params:
|
462 |
+
if pair[1] in state_dict:
|
463 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
464 |
+
|
465 |
+
return state_dict
|
466 |
+
|
467 |
+
|
468 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
469 |
+
"""
|
470 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
471 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
472 |
+
via a model hub.
|
473 |
+
|
474 |
+
Args:
|
475 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
476 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
477 |
+
|
478 |
+
Returns:
|
479 |
+
- pytorch ``state_dict``
|
480 |
+
|
481 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
482 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
483 |
+
the checkpoint.
|
484 |
+
|
485 |
+
A typical usage might be ::
|
486 |
+
|
487 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
488 |
+
# do the training and checkpoint saving
|
489 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
490 |
+
model = model.cpu() # move to cpu
|
491 |
+
model.load_state_dict(state_dict)
|
492 |
+
# submit to model hub or save the model to share with others
|
493 |
+
|
494 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
495 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
496 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
497 |
+
|
498 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
499 |
+
|
500 |
+
"""
|
501 |
+
if tag is None:
|
502 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
503 |
+
if os.path.isfile(latest_path):
|
504 |
+
with open(latest_path, 'r') as fd:
|
505 |
+
tag = fd.read().strip()
|
506 |
+
else:
|
507 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
508 |
+
|
509 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
510 |
+
|
511 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
512 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
513 |
+
|
514 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
515 |
+
|
516 |
+
|
517 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
518 |
+
"""
|
519 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
520 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
521 |
+
|
522 |
+
Args:
|
523 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
524 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
525 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
526 |
+
"""
|
527 |
+
|
528 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
529 |
+
print(f"Saving fp32 state dict to {output_file}")
|
530 |
+
torch.save(state_dict, output_file)
|
531 |
+
|
532 |
+
|
533 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
534 |
+
"""
|
535 |
+
1. Put the provided model to cpu
|
536 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
537 |
+
3. Load it into the provided model
|
538 |
+
|
539 |
+
Args:
|
540 |
+
- ``model``: the model object to update
|
541 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
542 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
543 |
+
|
544 |
+
Returns:
|
545 |
+
- ``model`: modified model
|
546 |
+
|
547 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
548 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
549 |
+
conveniently placed for you in the checkpoint folder.
|
550 |
+
|
551 |
+
A typical usage might be ::
|
552 |
+
|
553 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
554 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
555 |
+
# submit to model hub or save the model to share with others
|
556 |
+
|
557 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
558 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
559 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
560 |
+
|
561 |
+
"""
|
562 |
+
logger.info(f"Extracting fp32 weights")
|
563 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
564 |
+
|
565 |
+
logger.info(f"Overwriting model with fp32 weights")
|
566 |
+
model = model.cpu()
|
567 |
+
model.load_state_dict(state_dict, strict=False)
|
568 |
+
|
569 |
+
return model
|
570 |
+
|
571 |
+
|
572 |
+
if __name__ == "__main__":
|
573 |
+
|
574 |
+
parser = argparse.ArgumentParser()
|
575 |
+
parser.add_argument("checkpoint_dir",
|
576 |
+
type=str,
|
577 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
578 |
+
parser.add_argument(
|
579 |
+
"output_file",
|
580 |
+
type=str,
|
581 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
582 |
+
parser.add_argument("-t",
|
583 |
+
"--tag",
|
584 |
+
type=str,
|
585 |
+
default=None,
|
586 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
587 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
588 |
+
args = parser.parse_args()
|
589 |
+
|
590 |
+
debug = args.debug
|
591 |
+
|
592 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|
checkpoint-372/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: google/gemma-7b-it
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.9.0
|
checkpoint-372/adapter_config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "google/gemma-7b-it",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": null,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"loftq_config": {},
|
12 |
+
"lora_alpha": 16,
|
13 |
+
"lora_dropout": 0.05,
|
14 |
+
"megatron_config": null,
|
15 |
+
"megatron_core": "megatron.core",
|
16 |
+
"modules_to_save": null,
|
17 |
+
"peft_type": "LORA",
|
18 |
+
"r": 32,
|
19 |
+
"rank_pattern": {},
|
20 |
+
"revision": null,
|
21 |
+
"target_modules": [
|
22 |
+
"down_proj",
|
23 |
+
"o_proj",
|
24 |
+
"k_proj",
|
25 |
+
"q_proj",
|
26 |
+
"gate_proj",
|
27 |
+
"up_proj",
|
28 |
+
"v_proj"
|
29 |
+
],
|
30 |
+
"task_type": "CAUSAL_LM",
|
31 |
+
"use_dora": false,
|
32 |
+
"use_rslora": false
|
33 |
+
}
|
checkpoint-372/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c23b965687f7bf2e033e1e8051de69e24c99f3103c06606007e68485ebfabea
|
3 |
+
size 200068904
|
checkpoint-372/global_step372/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:712292fc7e5a6d570c1376cc3be7e12dab2d34fb7ffe48281da38c8053603a39
|
3 |
+
size 150126608
|
checkpoint-372/global_step372/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d3c6bbd461df3af80fb33496e1907ef542102bfa96434d50c174fe80c0dd98e4
|
3 |
+
size 150126672
|
checkpoint-372/global_step372/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:46fee0787345b6483d7a54f3ceeb3260a7a8bef008c22e24c18225027433ff01
|
3 |
+
size 150126736
|
checkpoint-372/global_step372/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0fbe9084b027f2164f5fa8039ea7d37a722d0e0f9f70b2a76fa605e462a2ad6e
|
3 |
+
size 150126736
|
checkpoint-372/global_step372/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a38ea9a669e473fff57e6c134dd6703ddacc9f123121be165e81bcdcad09513b
|
3 |
+
size 1896781286
|
checkpoint-372/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step372
|
checkpoint-372/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4ebe22192845fac896cd970f52665ebcfd6b5796077804b55f0d8830fcfa32be
|
3 |
+
size 15024
|
checkpoint-372/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a5bbd2194b05d2155d794f7732bdab8deaa38ee92f4c49fa250d0c9f0fd5f532
|
3 |
+
size 15024
|