--- library_name: transformers language: - mr license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: whisper-medium-marathi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 13 type: mozilla-foundation/common_voice_13_0 config: mr split: test args: mr metrics: - name: Wer type: wer value: 10.0 --- # whisper-medium-marathi This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co./openai/whisper-medium) on the Common Voice 13 dataset. It achieves the following results on the evaluation set: - Loss: 4.1106 - Wer Ortho: 10.0 - Wer: 10.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.01 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:------:|:----:|:---------------:|:---------:|:----:| | 5.2043 | 0.1994 | 200 | 4.1106 | 10.0 | 10.0 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1