--- library_name: transformers language: - mr license: apache-2.0 base_model: openai/whisper-large tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: whisper-large-marathi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17 type: mozilla-foundation/common_voice_17_0 config: mr split: test args: mr metrics: - name: Wer type: wer value: 11.99582494594796 --- # whisper-large-marathi This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co./openai/whisper-large) on the Common Voice 17 dataset. It achieves the following results on the evaluation set: - Loss: 0.1845 - Wer Ortho: 32.4713 - Wer: 11.9958 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 12 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:| | 0.1771 | 1.0 | 250 | 0.2041 | 36.0371 | 13.7851 | | 0.0806 | 2.0 | 500 | 0.1845 | 32.4713 | 11.9958 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1