drbeane commited on
Commit
919355b
·
1 Parent(s): 713327f

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1617.69 +/- 55.55
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:123a4451600d46227b7a17d59b826a2f41e2e2e7fce01e370d705e75e7efa277
3
+ size 129531
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x784a4a617010>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x784a4a6170a0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x784a4a617130>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x784a4a6171c0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x784a4a617250>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x784a4a6172e0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x784a4a617370>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x784a4a617400>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x784a4a617490>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x784a4a617520>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x784a4a6175b0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x784a4a617640>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x784a4a624600>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "num_timesteps": 2000000,
36
+ "_total_timesteps": 2000000,
37
+ "_num_timesteps_at_start": 0,
38
+ "seed": null,
39
+ "action_noise": null,
40
+ "start_time": 1689705752058961612,
41
+ "learning_rate": 0.00096,
42
+ "tensorboard_log": null,
43
+ "_last_obs": {
44
+ ":type:": "<class 'numpy.ndarray'>",
45
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAI33iz5JpJq/eGVmvwOOcz5q3le9jMxzvoL0JD6Mvzo+RCmGv9OqAMDzd4G/Csaru+rDR7/+IVs9CdCsvsE3WD+TSI4/ky/tP99lST4siby/rYVRv/JKR7+45fo+EeuyPuNCvL+Nt6c+OJrzv2H2ij+ZMD8/YPsAPildGT8Er4A/490CPpmtD8BLJiw+0SUrvRtUCT9eoizAngTFPr3mpr8QMgQ8XjJawAwZ5r53uLa/Z4g4Pm/RI7+oFxy9gsA7QDkbxT2SgHPAjCtdvnvalL9UDi4/jbenPjia878Ezmu/VQNoP+/b2D64KTE/UTDRPwD6fb6nho4/oA85v1G7ir/hk4w/mvKtP5N83z4L69S9sG/PP5OZRz+f5yg/zvABv5nfOz/TNwa/KnOIv4I5pD6337U/5fcMP8r1oz9BnBS/VA4uP423pz6mgwY/BM5rv3ixST9bcbE9c/sUPyVo2D83CbA9NHelP/WZib+HqnO/ceKNP/oeKz+tZeG82kFcPec40T86y44+Q7UtPwSgqjwSbxA+WZWmv5zddr/5kiU/DQHzPwTNBb8wNXw/jhFmPlQOLj+Nt6c+poMGPwTOa7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
46
+ },
47
+ "_last_episode_starts": {
48
+ ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
50
+ },
51
+ "_last_original_obs": {
52
+ ":type:": "<class 'numpy.ndarray'>",
53
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABhtgS2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAorwxvAAAAADvO+G/AAAAAOBY9T0AAAAA47TvPwAAAAB0vaS9AAAAAFlO4z8AAAAAvyYGPgAAAABfev+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAj8yetQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNyD4z0AAAAAiirevwAAAAC1Jg29AAAAACZu/T8AAAAAcKsHPgAAAAC0UeM/AAAAAKAPFT0AAAAAYtbcvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANZHEbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC5hQA+AAAAAPcF7r8AAAAA6FoAPgAAAACkCfg/AAAAAHj+7b0AAAAA9r7ZPwAAAAB6PJm8AAAAANSw5L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACBEPa2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAuB0PPgAAAAD8ZQDAAAAAAH5a2r0AAAAAeqXmPwAAAADtHEm8AAAAALrD3D8AAAAAlIeIPQAAAACp8ei/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
54
+ },
55
+ "_episode_num": 0,
56
+ "use_sde": true,
57
+ "sde_sample_freq": -1,
58
+ "_current_progress_remaining": 0.0,
59
+ "_stats_window_size": 100,
60
+ "ep_info_buffer": {
61
+ ":type:": "<class 'collections.deque'>",
62
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJQbwGu9vjyMAWyUTegDjAF0lEdArvOKKFZgX3V9lChoBkdAliY5IQOFxmgHTegDaAhHQK72tfShJy11fZQoaAZHQJNJG+xnnMdoB03oA2gIR0Cu+Qjy4FzNdX2UKGgGR0CTKfZy+6AfaAdN6ANoCEdArvqXEXLvC3V9lChoBkdAlMOH+VC5VmgHTegDaAhHQK8B00gr6Lx1fZQoaAZHQJcGkAn2IwdoB03oA2gIR0CvBLfYJ3PidX2UKGgGR0CWtah3aBZqaAdN6ANoCEdArwgsBwMpgHV9lChoBkdAkUkw84gieWgHTegDaAhHQK8Kj3/Pw/h1fZQoaAZHQJRuX/m1YyRoB03oA2gIR0CvE72szVMFdX2UKGgGR0CRPgn+AEt/aAdN6ANoCEdArxY/0ulGgHV9lChoBkdAlGWTH4oJA2gHTegDaAhHQK8YkflIVdp1fZQoaAZHQJZU+bc45tFoB03oA2gIR0CvGiiGnGbTdX2UKGgGR0CXwGVNYbKiaAdN6ANoCEdAryFnMMZxaXV9lChoBkdAllQ4a5wwTWgHTegDaAhHQK8j7LgXMyJ1fZQoaAZHQJS/+1pj+aVoB03oA2gIR0CvJ164c3l0dX2UKGgGR0CYL/PYFqzraAdN6ANoCEdArynAAwPAf3V9lChoBkdAl1T8nuy/sWgHTegDaAhHQK8zdbs4T9N1fZQoaAZHQJU67H6uW8hoB03oA2gIR0CvNfI9LYf5dX2UKGgGR0CNXRQmeDnOaAdN6ANoCEdArzg6z3RG+nV9lChoBkdAlGim7voeP2gHTegDaAhHQK850QhfShJ1fZQoaAZHQJb153/xUedoB03oA2gIR0CvQPGGEf1ZdX2UKGgGR0CXqjVgQYk3aAdN6ANoCEdAr0N3pUxVQ3V9lChoBkdAj+6jRlYlp2gHTegDaAhHQK9GXVH4Glh1fZQoaAZHQJW2JlcyFf1oB03oA2gIR0CvSKCBf8dgdX2UKGgGR0CVd2fa6BiDaAdN6ANoCEdAr1MSO938oHV9lChoBkdAllPRWT5ft2gHTegDaAhHQK9VnJmukk91fZQoaAZHQJT8011nuiNoB03oA2gIR0CvV/MuOCGvdX2UKGgGR0CWfnCRfWtmaAdN6ANoCEdAr1l/ARChOHV9lChoBkdAlP+DvVmSQ2gHTegDaAhHQK9gukhRqGl1fZQoaAZHQJbVAkiUxEhoB03oA2gIR0CvY0kk8ifQdX2UKGgGR0CXqI/hESdwaAdN6ANoCEdAr2XWOZLIxXV9lChoBkdAlq9qQq7ROWgHTegDaAhHQK9oLfv4M4N1fZQoaAZHQJakC0u14PhoB03oA2gIR0CvcumPo3aSdX2UKGgGR0CT4AJyQxN7aAdN6ANoCEdAr3VxjjJdSnV9lChoBkdAlYKwF1SwW2gHTegDaAhHQK934aLn9vV1fZQoaAZHQJOaD1SOzY5oB03oA2gIR0CveWtFKCg9dX2UKGgGR0CXB/SElE7XaAdN6ANoCEdAr4Cbsa86FXV9lChoBkdAk5mybH6uXGgHTegDaAhHQK+DExA0Kqp1fZQoaAZHQJS1j8IiTt9oB03oA2gIR0CvhWPvrnkldX2UKGgGR0CWPn7N0NjLaAdN6ANoCEdAr4dpGOMl1XV9lChoBkdAlSPRQN0/4mgHTegDaAhHQK+S07MgU111fZQoaAZHQJbW7aBZpztoB03oA2gIR0CvlWAiml67dX2UKGgGR0CXcFOh0yP/aAdN6ANoCEdAr5fCGYa5w3V9lChoBkdAlPfzT4L1EmgHTegDaAhHQK+ZVW/ag291fZQoaAZHQJZGpTJhfBxoB03oA2gIR0CvoIWRzRx+dX2UKGgGR0CWHhYHPeHjaAdN6ANoCEdAr6MCR8twrHV9lChoBkdAlwJzV6NVBGgHTegDaAhHQK+lbfZVXFN1fZQoaAZHQJcfQRYigTRoB03oA2gIR0Cvpx8BuGbkdX2UKGgGR0CXTswJw84haAdN6ANoCEdAr7I2xt52QnV9lChoBkdAlpdS+De0omgHTegDaAhHQK+1XtKqXF91fZQoaAZHQJYC9aUzKtBoB03oA2gIR0Cvt7dcB2fTdX2UKGgGR0CVEX8qnWJ8aAdN6ANoCEdAr7lVKh+OO3V9lChoBkdAkkyguM+/xmgHTegDaAhHQK/AfBmf5DZ1fZQoaAZHQJUTZvR7Z39oB03oA2gIR0CvwvcGs3hodX2UKGgGR0CPVgxj8UEgaAdN6ANoCEdAr8VLk4m1IHV9lChoBkdAj8K3rMTviWgHTegDaAhHQK/G3a+N96V1fZQoaAZHQJVi1+hGpddoB03oA2gIR0Cv0YDrzGxVdX2UKGgGR0CVZk5lvqC6aAdN6ANoCEdAr9UuGCZnc3V9lChoBkdAlJqalgtvoGgHTegDaAhHQK/XjdVvMr51fZQoaAZHQJauMyHmA9VoB03oA2gIR0Cv2S0x/NJOdX2UKGgGR0CYkjypaRp2aAdN6ANoCEdAr+BwAsCkoHV9lChoBkdAmDEFcdHUdGgHTegDaAhHQK/i9BOYYzl1fZQoaAZHQJjUvwZwXIloB03oA2gIR0Cv5VgSnLq2dX2UKGgGR0CX4sNn5BToaAdN6ANoCEdAr+bzrgOz6nV9lChoBkdAmUicrEtNBWgHTegDaAhHQK/xEg9vCMx1fZQoaAZHQJlV6mCROlBoB03oA2gIR0Cv9SGbTc7AdX2UKGgGR0CV7O07r9l3aAdN6ANoCEdAr/eBk9U0enV9lChoBkdAmENmycCo0mgHTegDaAhHQK/5EYjSofl1fZQoaAZHQJhikjps41hoB03oA2gIR0CwACHTd+G5dX2UKGgGR0CX1RZtNzsAaAdN6ANoCEdAsAFqhN/OMXV9lChoBkdAlH52MsH0LGgHTegDaAhHQLACmGMXJo11fZQoaAZHQJaWacJ+lTFoB03oA2gIR0CwA2jv7WNFdX2UKGgGR0CQ7qHSnccmaAdN6ANoCEdAsAh3vgFX73V9lChoBkdAjS6OUt7KJWgHTegDaAhHQLAKiMLF4s51fZQoaAZHQJNNtD1GsmxoB03oA2gIR0CwC9Jrk8zRdX2UKGgGR0CSjAaJhvzfaAdN6ANoCEdAsAyarilzl3V9lChoBkdAktQGBBiTdWgHTegDaAhHQLAQR86mwaB1fZQoaAZHQJNA4oc7yQRoB03oA2gIR0CwEZUQ9RrKdX2UKGgGR0CQ4yyfthNNaAdN6ANoCEdAsBLJGpda+3V9lChoBkdAjlT8wQDmsGgHTegDaAhHQLATl9Iwudx1fZQoaAZHQI9R/BP9DQZoB03oA2gIR0CwGKAO4G2UdX2UKGgGR0CNOOV+qioLaAdN6ANoCEdAsBq03eenRHV9lChoBkdAkJXU2cawU2gHTegDaAhHQLAcDjAzpHJ1fZQoaAZHQI1xxNwiqyZoB03oA2gIR0CwHNb4WUKRdX2UKGgGR0CKl4LqD9OzaAdN6ANoCEdAsCB/rX18LXV9lChoBkdAjHWMo2GZeGgHTegDaAhHQLAhzxREWqN1fZQoaAZHQJPlntXxOL1oB03oA2gIR0CwIwrnX/YKdX2UKGgGR0CSLmiHqNZNaAdN6ANoCEdAsCPbROUMX3V9lChoBkdAlD+6RMewLWgHTegDaAhHQLAoz704BFN1fZQoaAZHQJDIW3/givBoB03oA2gIR0CwKuR95QgtdX2UKGgGR0CVyAp71Iy1aAdN6ANoCEdAsCxPTMJQcnV9lChoBkdAkCekYsNDt2gHTegDaAhHQLAtHROUMXt1fZQoaAZHQJeIuT9sJppoB03oA2gIR0CwMLfgJkXldX2UKGgGR0CYbjg7HQyAaAdN6ANoCEdAsDIFLRKHwnV9lChoBkdAl1usGgSOBGgHTegDaAhHQLAzO8OkLx91fZQoaAZHQJcjFkpZwGZoB03oA2gIR0CwNA7eANG3dX2UKGgGR0CT30XqJMxoaAdN6ANoCEdAsDjNE8aGYnV9lChoBkdAkx1k6xPfsWgHTegDaAhHQLA64Z7ojfN1fZQoaAZHQJYegSUTtb9oB03oA2gIR0CwPGfwmVqvdX2UKGgGR0CXVXZZjhDPaAdN6ANoCEdAsD0ylchTwXVlLg=="
63
+ },
64
+ "ep_success_buffer": {
65
+ ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
67
+ },
68
+ "_n_updates": 62500,
69
+ "n_steps": 8,
70
+ "gamma": 0.99,
71
+ "gae_lambda": 0.9,
72
+ "ent_coef": 0.0,
73
+ "vf_coef": 0.4,
74
+ "max_grad_norm": 0.5,
75
+ "normalize_advantage": false,
76
+ "observation_space": {
77
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
78
+ ":serialized:": "gAWVlwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxyFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaBVLHIWUaBl0lFKUjAZfc2hhcGWUSxyFlIwDbG93lGgRKJZwAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLHIWUaBl0lFKUjARoaWdolGgRKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBl0lFKUjAhsb3dfcmVwcpSMBC1pbmaUjAloaWdoX3JlcHKUjANpbmaUjApfbnBfcmFuZG9tlE51Yi4=",
79
+ "dtype": "float32",
80
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
81
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
82
+ "_shape": [
83
+ 28
84
+ ],
85
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
86
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
87
+ "low_repr": "-inf",
88
+ "high_repr": "inf",
89
+ "_np_random": null
90
+ },
91
+ "action_space": {
92
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
93
+ ":serialized:": "gAWVzwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZROdWIu",
94
+ "dtype": "float32",
95
+ "bounded_below": "[ True True True True True True True True]",
96
+ "bounded_above": "[ True True True True True True True True]",
97
+ "_shape": [
98
+ 8
99
+ ],
100
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
101
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
102
+ "low_repr": "-1.0",
103
+ "high_repr": "1.0",
104
+ "_np_random": null
105
+ },
106
+ "n_envs": 4,
107
+ "lr_schedule": {
108
+ ":type:": "<class 'function'>",
109
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
110
+ }
111
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a5eab8df48ac622e02c6d3cb544301fef2f0df9a36549945385694118dd9525
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3e40a33a9fdd6ef62bc2d5ad32b933343c7c88fe82aed455619f0d1da41104b
3
+ size 56894
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x784a4a617010>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x784a4a6170a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x784a4a617130>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x784a4a6171c0>", "_build": "<function ActorCriticPolicy._build at 0x784a4a617250>", "forward": "<function ActorCriticPolicy.forward at 0x784a4a6172e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x784a4a617370>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x784a4a617400>", "_predict": "<function ActorCriticPolicy._predict at 0x784a4a617490>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x784a4a617520>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x784a4a6175b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x784a4a617640>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x784a4a624600>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689705752058961612, "learning_rate": 0.00096, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAI33iz5JpJq/eGVmvwOOcz5q3le9jMxzvoL0JD6Mvzo+RCmGv9OqAMDzd4G/Csaru+rDR7/+IVs9CdCsvsE3WD+TSI4/ky/tP99lST4siby/rYVRv/JKR7+45fo+EeuyPuNCvL+Nt6c+OJrzv2H2ij+ZMD8/YPsAPildGT8Er4A/490CPpmtD8BLJiw+0SUrvRtUCT9eoizAngTFPr3mpr8QMgQ8XjJawAwZ5r53uLa/Z4g4Pm/RI7+oFxy9gsA7QDkbxT2SgHPAjCtdvnvalL9UDi4/jbenPjia878Ezmu/VQNoP+/b2D64KTE/UTDRPwD6fb6nho4/oA85v1G7ir/hk4w/mvKtP5N83z4L69S9sG/PP5OZRz+f5yg/zvABv5nfOz/TNwa/KnOIv4I5pD6337U/5fcMP8r1oz9BnBS/VA4uP423pz6mgwY/BM5rv3ixST9bcbE9c/sUPyVo2D83CbA9NHelP/WZib+HqnO/ceKNP/oeKz+tZeG82kFcPec40T86y44+Q7UtPwSgqjwSbxA+WZWmv5zddr/5kiU/DQHzPwTNBb8wNXw/jhFmPlQOLj+Nt6c+poMGPwTOa7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABhtgS2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAorwxvAAAAADvO+G/AAAAAOBY9T0AAAAA47TvPwAAAAB0vaS9AAAAAFlO4z8AAAAAvyYGPgAAAABfev+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAj8yetQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNyD4z0AAAAAiirevwAAAAC1Jg29AAAAACZu/T8AAAAAcKsHPgAAAAC0UeM/AAAAAKAPFT0AAAAAYtbcvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANZHEbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC5hQA+AAAAAPcF7r8AAAAA6FoAPgAAAACkCfg/AAAAAHj+7b0AAAAA9r7ZPwAAAAB6PJm8AAAAANSw5L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACBEPa2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAuB0PPgAAAAD8ZQDAAAAAAH5a2r0AAAAAeqXmPwAAAADtHEm8AAAAALrD3D8AAAAAlIeIPQAAAACp8ei/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJQbwGu9vjyMAWyUTegDjAF0lEdArvOKKFZgX3V9lChoBkdAliY5IQOFxmgHTegDaAhHQK72tfShJy11fZQoaAZHQJNJG+xnnMdoB03oA2gIR0Cu+Qjy4FzNdX2UKGgGR0CTKfZy+6AfaAdN6ANoCEdArvqXEXLvC3V9lChoBkdAlMOH+VC5VmgHTegDaAhHQK8B00gr6Lx1fZQoaAZHQJcGkAn2IwdoB03oA2gIR0CvBLfYJ3PidX2UKGgGR0CWtah3aBZqaAdN6ANoCEdArwgsBwMpgHV9lChoBkdAkUkw84gieWgHTegDaAhHQK8Kj3/Pw/h1fZQoaAZHQJRuX/m1YyRoB03oA2gIR0CvE72szVMFdX2UKGgGR0CRPgn+AEt/aAdN6ANoCEdArxY/0ulGgHV9lChoBkdAlGWTH4oJA2gHTegDaAhHQK8YkflIVdp1fZQoaAZHQJZU+bc45tFoB03oA2gIR0CvGiiGnGbTdX2UKGgGR0CXwGVNYbKiaAdN6ANoCEdAryFnMMZxaXV9lChoBkdAllQ4a5wwTWgHTegDaAhHQK8j7LgXMyJ1fZQoaAZHQJS/+1pj+aVoB03oA2gIR0CvJ164c3l0dX2UKGgGR0CYL/PYFqzraAdN6ANoCEdArynAAwPAf3V9lChoBkdAl1T8nuy/sWgHTegDaAhHQK8zdbs4T9N1fZQoaAZHQJU67H6uW8hoB03oA2gIR0CvNfI9LYf5dX2UKGgGR0CNXRQmeDnOaAdN6ANoCEdArzg6z3RG+nV9lChoBkdAlGim7voeP2gHTegDaAhHQK850QhfShJ1fZQoaAZHQJb153/xUedoB03oA2gIR0CvQPGGEf1ZdX2UKGgGR0CXqjVgQYk3aAdN6ANoCEdAr0N3pUxVQ3V9lChoBkdAj+6jRlYlp2gHTegDaAhHQK9GXVH4Glh1fZQoaAZHQJW2JlcyFf1oB03oA2gIR0CvSKCBf8dgdX2UKGgGR0CVd2fa6BiDaAdN6ANoCEdAr1MSO938oHV9lChoBkdAllPRWT5ft2gHTegDaAhHQK9VnJmukk91fZQoaAZHQJT8011nuiNoB03oA2gIR0CvV/MuOCGvdX2UKGgGR0CWfnCRfWtmaAdN6ANoCEdAr1l/ARChOHV9lChoBkdAlP+DvVmSQ2gHTegDaAhHQK9gukhRqGl1fZQoaAZHQJbVAkiUxEhoB03oA2gIR0CvY0kk8ifQdX2UKGgGR0CXqI/hESdwaAdN6ANoCEdAr2XWOZLIxXV9lChoBkdAlq9qQq7ROWgHTegDaAhHQK9oLfv4M4N1fZQoaAZHQJakC0u14PhoB03oA2gIR0CvcumPo3aSdX2UKGgGR0CT4AJyQxN7aAdN6ANoCEdAr3VxjjJdSnV9lChoBkdAlYKwF1SwW2gHTegDaAhHQK934aLn9vV1fZQoaAZHQJOaD1SOzY5oB03oA2gIR0CveWtFKCg9dX2UKGgGR0CXB/SElE7XaAdN6ANoCEdAr4Cbsa86FXV9lChoBkdAk5mybH6uXGgHTegDaAhHQK+DExA0Kqp1fZQoaAZHQJS1j8IiTt9oB03oA2gIR0CvhWPvrnkldX2UKGgGR0CWPn7N0NjLaAdN6ANoCEdAr4dpGOMl1XV9lChoBkdAlSPRQN0/4mgHTegDaAhHQK+S07MgU111fZQoaAZHQJbW7aBZpztoB03oA2gIR0CvlWAiml67dX2UKGgGR0CXcFOh0yP/aAdN6ANoCEdAr5fCGYa5w3V9lChoBkdAlPfzT4L1EmgHTegDaAhHQK+ZVW/ag291fZQoaAZHQJZGpTJhfBxoB03oA2gIR0CvoIWRzRx+dX2UKGgGR0CWHhYHPeHjaAdN6ANoCEdAr6MCR8twrHV9lChoBkdAlwJzV6NVBGgHTegDaAhHQK+lbfZVXFN1fZQoaAZHQJcfQRYigTRoB03oA2gIR0Cvpx8BuGbkdX2UKGgGR0CXTswJw84haAdN6ANoCEdAr7I2xt52QnV9lChoBkdAlpdS+De0omgHTegDaAhHQK+1XtKqXF91fZQoaAZHQJYC9aUzKtBoB03oA2gIR0Cvt7dcB2fTdX2UKGgGR0CVEX8qnWJ8aAdN6ANoCEdAr7lVKh+OO3V9lChoBkdAkkyguM+/xmgHTegDaAhHQK/AfBmf5DZ1fZQoaAZHQJUTZvR7Z39oB03oA2gIR0CvwvcGs3hodX2UKGgGR0CPVgxj8UEgaAdN6ANoCEdAr8VLk4m1IHV9lChoBkdAj8K3rMTviWgHTegDaAhHQK/G3a+N96V1fZQoaAZHQJVi1+hGpddoB03oA2gIR0Cv0YDrzGxVdX2UKGgGR0CVZk5lvqC6aAdN6ANoCEdAr9UuGCZnc3V9lChoBkdAlJqalgtvoGgHTegDaAhHQK/XjdVvMr51fZQoaAZHQJauMyHmA9VoB03oA2gIR0Cv2S0x/NJOdX2UKGgGR0CYkjypaRp2aAdN6ANoCEdAr+BwAsCkoHV9lChoBkdAmDEFcdHUdGgHTegDaAhHQK/i9BOYYzl1fZQoaAZHQJjUvwZwXIloB03oA2gIR0Cv5VgSnLq2dX2UKGgGR0CX4sNn5BToaAdN6ANoCEdAr+bzrgOz6nV9lChoBkdAmUicrEtNBWgHTegDaAhHQK/xEg9vCMx1fZQoaAZHQJlV6mCROlBoB03oA2gIR0Cv9SGbTc7AdX2UKGgGR0CV7O07r9l3aAdN6ANoCEdAr/eBk9U0enV9lChoBkdAmENmycCo0mgHTegDaAhHQK/5EYjSofl1fZQoaAZHQJhikjps41hoB03oA2gIR0CwACHTd+G5dX2UKGgGR0CX1RZtNzsAaAdN6ANoCEdAsAFqhN/OMXV9lChoBkdAlH52MsH0LGgHTegDaAhHQLACmGMXJo11fZQoaAZHQJaWacJ+lTFoB03oA2gIR0CwA2jv7WNFdX2UKGgGR0CQ7qHSnccmaAdN6ANoCEdAsAh3vgFX73V9lChoBkdAjS6OUt7KJWgHTegDaAhHQLAKiMLF4s51fZQoaAZHQJNNtD1GsmxoB03oA2gIR0CwC9Jrk8zRdX2UKGgGR0CSjAaJhvzfaAdN6ANoCEdAsAyarilzl3V9lChoBkdAktQGBBiTdWgHTegDaAhHQLAQR86mwaB1fZQoaAZHQJNA4oc7yQRoB03oA2gIR0CwEZUQ9RrKdX2UKGgGR0CQ4yyfthNNaAdN6ANoCEdAsBLJGpda+3V9lChoBkdAjlT8wQDmsGgHTegDaAhHQLATl9Iwudx1fZQoaAZHQI9R/BP9DQZoB03oA2gIR0CwGKAO4G2UdX2UKGgGR0CNOOV+qioLaAdN6ANoCEdAsBq03eenRHV9lChoBkdAkJXU2cawU2gHTegDaAhHQLAcDjAzpHJ1fZQoaAZHQI1xxNwiqyZoB03oA2gIR0CwHNb4WUKRdX2UKGgGR0CKl4LqD9OzaAdN6ANoCEdAsCB/rX18LXV9lChoBkdAjHWMo2GZeGgHTegDaAhHQLAhzxREWqN1fZQoaAZHQJPlntXxOL1oB03oA2gIR0CwIwrnX/YKdX2UKGgGR0CSLmiHqNZNaAdN6ANoCEdAsCPbROUMX3V9lChoBkdAlD+6RMewLWgHTegDaAhHQLAoz704BFN1fZQoaAZHQJDIW3/givBoB03oA2gIR0CwKuR95QgtdX2UKGgGR0CVyAp71Iy1aAdN6ANoCEdAsCxPTMJQcnV9lChoBkdAkCekYsNDt2gHTegDaAhHQLAtHROUMXt1fZQoaAZHQJeIuT9sJppoB03oA2gIR0CwMLfgJkXldX2UKGgGR0CYbjg7HQyAaAdN6ANoCEdAsDIFLRKHwnV9lChoBkdAl1usGgSOBGgHTegDaAhHQLAzO8OkLx91fZQoaAZHQJcjFkpZwGZoB03oA2gIR0CwNA7eANG3dX2UKGgGR0CT30XqJMxoaAdN6ANoCEdAsDjNE8aGYnV9lChoBkdAkx1k6xPfsWgHTegDaAhHQLA64Z7ojfN1fZQoaAZHQJYegSUTtb9oB03oA2gIR0CwPGfwmVqvdX2UKGgGR0CXVXZZjhDPaAdN6ANoCEdAsD0ylchTwXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVlwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxyFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaBVLHIWUaBl0lFKUjAZfc2hhcGWUSxyFlIwDbG93lGgRKJZwAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLHIWUaBl0lFKUjARoaWdolGgRKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBl0lFKUjAhsb3dfcmVwcpSMBC1pbmaUjAloaWdoX3JlcHKUjANpbmaUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "low_repr": "-inf", "high_repr": "inf", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVzwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1617.694967479445, "std_reward": 55.54908431119399, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-18T19:57:35.863500"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f9e11ab67422abedbbc9602da42f683b9ad07669f4e523e11036b8292162126
3
+ size 2376