--- library_name: transformers base_model: nateraw/vit-age-classifier tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: results results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.55 --- # results This model is a fine-tuned version of [nateraw/vit-age-classifier](https://huggingface.co./nateraw/vit-age-classifier) on the imagefolder dataset. It achieves the following results on the evaluation set: - Accuracy: 0.55 - Loss: 1.6263 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:---------------:| | 2.1123 | 1.0 | 50 | 0.2412 | 2.0343 | | 1.8449 | 2.0 | 100 | 0.4113 | 1.7485 | | 1.7374 | 3.0 | 150 | 0.55 | 1.6263 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3