File size: 2,897 Bytes
8e0535d 39c2539 8e0535d b3750b3 8e0535d b3750b3 f099a9d a8e114b 8e0535d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
---
language:
- pt
license: cc-by-4.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Tiny PT
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: pt
split: test
args: pt
metrics:
- type: wer
value: 29.11
name: WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: google/fleurs
type: google/fleurs
config: pt_br
split: test
metrics:
- type: wer
value: 26.36
name: WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: mozilla-foundation/common_voice_9_0
type: mozilla-foundation/common_voice_9_0
config: pt
split: test
metrics:
- type: wer
value: 28.68
name: WER
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Tiny PT
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co./openai/whisper-tiny) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6077
- Wer: 29.9844
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.4143 | 1.04 | 500 | 0.5325 | 32.7399 |
| 0.2693 | 3.03 | 1000 | 0.4718 | 29.4867 |
| 0.1724 | 5.01 | 1500 | 0.4758 | 28.7218 |
| 0.0849 | 7.0 | 2000 | 0.5070 | 29.2211 |
| 0.0659 | 8.04 | 2500 | 0.5223 | 29.3169 |
| 0.0539 | 10.03 | 3000 | 0.5402 | 30.1458 |
| 0.0376 | 12.02 | 3500 | 0.5755 | 29.9995 |
| 0.0217 | 14.0 | 4000 | 0.6067 | 29.6565 |
| 0.0168 | 15.04 | 4500 | 0.6082 | 29.8162 |
| 0.0205 | 17.03 | 5000 | 0.6077 | 29.9844 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|