File size: 13,672 Bytes
164707c 3b52fa4 164707c f5bbea2 1d32322 f5bbea2 3b52fa4 fa5879c 164707c 11f68f2 164707c 11f68f2 164707c 18d34bd f4789cb d5240c6 f4789cb 98567cb f4789cb 98567cb f4789cb 18d34bd 164707c 3b52fa4 fa5879c a72b271 fa5879c a72b271 fa5879c 3b52fa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 |
---
language:
- pt
license: llama2
library_name: transformers
tags:
- text-generation
- pytorch
- LLM
- Portuguese
- Llama 2
datasets:
- dominguesm/CC-MAIN-2023-23
inference: false
pipeline_tag: text-generation
model-index:
- name: canarim-7b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 51.96
name: normalized accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=dominguesm/canarim-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 77.52
name: normalized accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=dominguesm/canarim-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 40.92
name: accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=dominguesm/canarim-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 40.03
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=dominguesm/canarim-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 71.43
name: accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=dominguesm/canarim-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 9.93
name: accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=dominguesm/canarim-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: ENEM (3-shot)
type: enem_challenge
config: main
split: test
args:
num_few_shot: 3
metrics:
- type: acc
value: 26.96
name: accuracy
source:
url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=dominguesm/canarim-7b
name: Open PT LLM Leaderboard Evaluation Results
- task:
type: text-generation
name: Text Generation
dataset:
name: BLUEX (3-shot)
type: bluex
config: main
split: test
args:
num_few_shot: 3
metrics:
- type: acc
value: 29.76
name: accuracy
source:
url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=dominguesm/canarim-7b
name: Open PT LLM Leaderboard Evaluation Results
- task:
type: text-generation
name: Text Generation
dataset:
name: OAB Exams (3-shot)
type: oab_exams
config: main
split: test
args:
num_few_shot: 3
metrics:
- type: acc
value: 31.48
name: accuracy
source:
url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=dominguesm/canarim-7b
name: Open PT LLM Leaderboard Evaluation Results
- task:
type: text-generation
name: Text Generation
dataset:
name: ASSIN2 RTE (15-shot)
type: assin2_rte
config: main
split: test
args:
num_few_shot: 15
metrics:
- type: acc
value: 71.96
name: accuracy
source:
url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=dominguesm/canarim-7b
name: Open PT LLM Leaderboard Evaluation Results
- task:
type: text-generation
name: Text Generation
dataset:
name: ASSIN2 STS (15-shot)
type: assin2_sts
config: main
split: test
args:
num_few_shot: 15
metrics:
- type: acc
value: 13.33
name: accuracy
source:
url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=dominguesm/canarim-7b
name: Open PT LLM Leaderboard Evaluation Results
- task:
type: text-generation
name: Text Generation
dataset:
name: FAQUAD NLI (15-shot)
type: faquad_nli
config: main
split: test
args:
num_few_shot: 15
metrics:
- type: acc
value: 49.09
name: accuracy
source:
url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=dominguesm/canarim-7b
name: Open PT LLM Leaderboard Evaluation Results
- task:
type: text-generation
name: Text Generation
dataset:
name: HateBR (25-shot)
type: hatebr_offensive
config: main
split: test
args:
num_few_shot: 25
metrics:
- type: acc
value: 78.48
name: accuracy
source:
url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=dominguesm/canarim-7b
name: Open PT LLM Leaderboard Evaluation Results
- task:
type: text-generation
name: Text Generation
dataset:
name: PT Hate Speech (25-shot)
type: portuguese_hate_speech
config: main
split: test
args:
num_few_shot: 25
metrics:
- type: acc
value: 63.73
name: accuracy
source:
url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=dominguesm/canarim-7b
name: Open PT LLM Leaderboard Evaluation Results
- task:
type: text-generation
name: Text Generation
dataset:
name: tweetSentBR (25-shot)
type: tweetsentbr
config: main
split: test
args:
num_few_shot: 25
metrics:
- type: acc
value: 62.38
name: accuracy
source:
url: https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=dominguesm/canarim-7b
name: Open PT LLM Leaderboard Evaluation Results
---
<p align="center">
<img width="250" alt="Camarim Logo" src="https://raw.githubusercontent.com/DominguesM/Canarim-Instruct-PTBR/main/assets/canarim.png">
</p>
<hr>
# Canarim-7B
Canarim-7B is a Portuguese large language model developed by [Maicon Domingues](https://nlp.rocks).
## Model description
The model was pretrained on 16 billion tokens from the Portuguese subset of [CommonCrawl 2023-23](https://huggingface.co./datasets/dominguesm/CC-MAIN-2023-23), starting with the weights of LLaMA2-7B. The pretraining data has cutoff of mid-2023.
## Key Features
- **Language:** Specialized in understanding and generating Portuguese text, making it ideal for applications targeting Portuguese-speaking audiences.
- **Architecture:** Inherits the robust architecture from LLaMA2-7B, ensuring efficient performance and accurate results.
- **Diverse Dataset:** The pretraining dataset includes a wide range of topics and writing styles, enhancing the model's ability to understand various contexts and nuances in Portuguese.
## Applications
Canarim-7B, was trained solely on a language modeling objective and has not been fine-tuned for instruction following. Therefore, it is more suited for few-shot tasks rather than zero-shot tasks. This means the model tends to perform better when provided with a few examples of the desired outcome during use. Here are some practical applications:
- **Natural Language Understanding (NLU):** Efficient in tasks such as sentiment analysis, topic classification, and entity recognition in Portuguese text, especially when relevant examples are provided.
- **Natural Language Generation (NLG):** Capable of generating coherent and contextually relevant text, useful for content creation, chatbots, and more, with improved results when provided examples of the desired style or format.
- **Language Translation:** Suitable for high-quality translation between Portuguese and other languages, especially when examples of desired translations are included during model training or fine-tuning.
### Tips for Efficient Use
- **Few-shot Learning:** When using Canarim-7B for specific tasks, it is beneficial to provide a few relevant examples. This helps the model better understand the context and purpose of the task.
- **Contextualization:** Including additional context in the input can significantly improve the quality of the model’s predictions and text generation.
---
## Getting Started
To start using Canarim-7B with the Transformers library, first install the library if you haven't already:
```bash
pip install transformers
```
You can then load the model using the Transformers library. Here's a simple example of how to use the model for text generation using the `pipeline` function:
```python
from transformers import AutoTokenizer, pipeline
import torch
model_id = "dominguesm/canarim-7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
pipe = pipeline(
"text-generation",
model=model_id,
torch_dtype=torch.float16,
device_map="auto",
)
prompt = make_prompt(question)
sequences = pipe(
prompt,
do_sample=True,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
max_length=2048,
temperature=0.9,
top_p=0.6,
repetition_penalty=1.15
)
```
This code snippet demonstrates how to generate text with Canarim-7B. You can customize the input text and adjust parameters like `max_length` according to your requirements.
## How to Cite
If you want to cite **Canarim-7B**, you could use this:
```
@misc {maicon_domingues_2023,
author = { {Maicon Domingues} },
title = { canarim-7b (Revision 08fdd2b) },
year = 2023,
url = { https://huggingface.co./dominguesm/canarim-7b },
doi = { 10.57967/hf/1356 },
publisher = { Hugging Face }
}
```
## Citations
```bibtex
@misc{touvron2023llama,
title={Llama 2: Open Foundation and Fine-Tuned Chat Models},
author={Hugo Touvron and Louis Martin and Kevin Stone and Peter Albert and Amjad Almahairi and Yasmine Babaei and Nikolay Bashlykov and Soumya Batra and Prajjwal Bhargava and Shruti Bhosale and Dan Bikel and Lukas Blecher and Cristian Canton Ferrer and Moya Chen and Guillem Cucurull and David Esiobu and Jude Fernandes and Jeremy Fu and Wenyin Fu and Brian Fuller and Cynthia Gao and Vedanuj Goswami and Naman Goyal and Anthony Hartshorn and Saghar Hosseini and Rui Hou and Hakan Inan and Marcin Kardas and Viktor Kerkez and Madian Khabsa and Isabel Kloumann and Artem Korenev and Punit Singh Koura and Marie-Anne Lachaux and Thibaut Lavril and Jenya Lee and Diana Liskovich and Yinghai Lu and Yuning Mao and Xavier Martinet and Todor Mihaylov and Pushkar Mishra and Igor Molybog and Yixin Nie and Andrew Poulton and Jeremy Reizenstein and Rashi Rungta and Kalyan Saladi and Alan Schelten and Ruan Silva and Eric Michael Smith and Ranjan Subramanian and Xiaoqing Ellen Tan and Binh Tang and Ross Taylor and Adina Williams and Jian Xiang Kuan and Puxin Xu and Zheng Yan and Iliyan Zarov and Yuchen Zhang and Angela Fan and Melanie Kambadur and Sharan Narang and Aurelien Rodriguez and Robert Stojnic and Sergey Edunov and Thomas Scialom},
year={2023},
eprint={2307.09288},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
## License
Canarim-7B is released under the [LLAMA 2 COMMUNITY LICENSE AGREEMENT](https://ai.meta.com/llama/license/).
## [Open PT LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/eduagarcia-temp/llm_pt_leaderboard_raw_results/tree/main/dominguesm/canarim-7b)
| Metric |Value|
|---------------------------------|----:|
|Avg. |47.36|
|ENEM (3-Shot) |25.96|
|BLUEX (3-Shot) |29.76|
|OAB Exams (3-Shot) |31.48|
|ASSIN2 RTE (15-shot) |71.96|
|ASSIN2 STS (15-shot) |13.33|
|FAQUAD NLI (15-shot) |49.09|
|HateBR (25-shot) |78.48|
|PT Hate Speech (25-shot) |63.73|
|tweetSentBR (25-shot) |62.38|
## [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_dominguesm__canarim-7b)
| Metric |Value|
|---------------------------------|----:|
|Avg. |48.63|
|AI2 Reasoning Challenge (25-Shot)|51.96|
|HellaSwag (10-Shot) |77.52|
|MMLU (5-Shot) |40.92|
|TruthfulQA (0-shot) |40.03|
|Winogrande (5-shot) |71.43|
|GSM8k (5-shot) | 9.93|
|