--- license: apache-2.0 tags: - text2text-generation - generated_from_trainer metrics: - rouge - bleu datasets: - domenicrosati/QA2D model-index: - name: QA2D-t5-base results: - task: name: Question to Declarative Sentence type: text2text-generation dataset: name: domenicrosati/QA2D type: domenicrosati/QA2D args: plain_text metrics: - name: Rouge1 type: rouge value: 90.1064 - name: Rouge2 type: rouge value: 82.378 - name: Rougel type: rouge value: 85.7963 - name: Rougelsum type: rouge value: 85.8004 - name: Bleu type: bleu value: 72.7328 widget: - text: "where in the world is carmen sandiego. she is in abruzzo" example_title: "Where is Carmen Sandiego?" - text: "which province is halifax in. nova scotia" example_title: "A Halifact" --- # QA2D-t5-base This model is a fine-tuned version of [t5-base](https://huggingface.co./t5-base) on [QA2D](https://huggingface.co./datasets/domenicrosati/QA2D). It achieves the following results on the evaluation set: - Loss: 0.2563 - Rouge1: 90.1064 - Rouge2: 82.378 - Rougel: 85.7963 - Rougelsum: 85.8004 - Bleu: 72.7328 See: [https://wandb.ai/domenicrosati/huggingface/runs/nqf7gsws](https://wandb.ai/domenicrosati/huggingface/runs/nqf7gsws) for training and eval stats and [https://github.com/domenicrosati/qa2d-models](https://github.com/domenicrosati/qa2d-models) for the code! ## Model description A t5-model model to convert questions, answer pairs into statements. Due to the way it's been trained the input should be all lower case and punctuation removed. Use with `. ` as the seperator between question and answer. > "where in the world is carmen. abruzzo" > Output: "carmen is in abruzzo" Thought punctation and upper case works. ``` from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained('domenicrosati/QA2D-t5-base') model = AutoModelForSeq2SeqLM.from_pretrained('domenicrosati/QA2D-t5-base') question = "where in the world is carmen sandiego" answer = "she is in abruzzo" SEP = ". " prompt = f'{question}{SEP}{answer}' input_ids = tokenizer(prompt, return_tensors='pt').input_ids output_ids = model.generate(input_ids) responses = tokenizer.batch_decode(output_ids, skip_special_tokens=True) # ['carmen sandiego is in abruzzo'] ```More information needed ## Intended uses & limitations To convert questions, answer pairs into statements. ## Training and evaluation data Uses [QA2D](https://huggingface.co./datasets/domenicrosati/QA2D). See [https://github.com/domenicrosati/qa2d-models](https://github.com/domenicrosati/qa2d-models) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.2304 | 1.0 | 5060 | 0.2512 | 90.044 | 82.2922 | 85.8021 | 85.8056 | 72.6252 | | 0.1746 | 2.0 | 10120 | 0.2525 | 90.097 | 82.3468 | 85.8191 | 85.8197 | 72.7480 | | 0.1512 | 3.0 | 15180 | 0.2563 | 90.1064 | 82.378 | 85.7963 | 85.8004 | 72.7328 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0a0+17540c5 - Datasets 2.1.0 - Tokenizers 0.12.1