Create Model_Training.py
Browse files- Model_Training.py +44 -0
Model_Training.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer, Trainer, TrainingArguments
|
2 |
+
from datasets import load_dataset
|
3 |
+
|
4 |
+
# Load dataset - CodeParrot is a good example dataset
|
5 |
+
dataset = load_dataset('codeparrot/code-to-text')
|
6 |
+
|
7 |
+
# Load pre-trained model and tokenizer
|
8 |
+
model = GPT2LMHeadModel.from_pretrained('gpt2-medium')
|
9 |
+
tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium')
|
10 |
+
|
11 |
+
# Tokenize dataset
|
12 |
+
def tokenize_function(examples):
|
13 |
+
return tokenizer(examples['code'], truncation=True, padding='max_length', max_length=512)
|
14 |
+
|
15 |
+
tokenized_datasets = dataset.map(tokenize_function, batched=True, remove_columns=['code'])
|
16 |
+
|
17 |
+
# Training arguments
|
18 |
+
training_args = TrainingArguments(
|
19 |
+
output_dir="./results",
|
20 |
+
evaluation_strategy="epoch",
|
21 |
+
learning_rate=5e-5,
|
22 |
+
per_device_train_batch_size=4,
|
23 |
+
per_device_eval_batch_size=4,
|
24 |
+
num_train_epochs=3,
|
25 |
+
weight_decay=0.01,
|
26 |
+
push_to_hub=True,
|
27 |
+
hub_model_id='dnnsdunca/UANN',
|
28 |
+
hub_token='YOUR_HUGGINGFACE_TOKEN'
|
29 |
+
)
|
30 |
+
|
31 |
+
# Trainer
|
32 |
+
trainer = Trainer(
|
33 |
+
model=model,
|
34 |
+
args=training_args,
|
35 |
+
train_dataset=tokenized_datasets['train'],
|
36 |
+
eval_dataset=tokenized_datasets['validation'],
|
37 |
+
)
|
38 |
+
|
39 |
+
# Train model
|
40 |
+
trainer.train()
|
41 |
+
|
42 |
+
# Save the model
|
43 |
+
model.save_pretrained('./codegen_model')
|
44 |
+
tokenizer.save_pretrained('./codegen_model')
|