|
import sys |
|
import logging |
|
|
|
import datasets |
|
from datasets import load_dataset |
|
from peft import LoraConfig |
|
import torch |
|
import transformers |
|
from trl import SFTTrainer |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, BitsAndBytesConfig |
|
|
|
""" |
|
A simple example on using SFTTrainer and Accelerate to finetune Phi-3 models. For |
|
a more advanced example, please follow HF alignment-handbook/scripts/run_sft.py. |
|
This example has utilized DeepSpeed ZeRO3 offload to reduce the memory usage. The |
|
script can be run on V100 or later generation GPUs. Here are some suggestions on |
|
futher reducing memory consumption: |
|
- reduce batch size |
|
- decrease lora dimension |
|
- restrict lora target modules |
|
Please follow these steps to run the script: |
|
1. Install dependencies: |
|
conda install -c conda-forge accelerate |
|
pip3 install -i https://pypi.org/simple/ bitsandbytes |
|
pip3 install peft transformers trl datasets |
|
pip3 install deepspeed |
|
2. Setup accelerate and deepspeed config based on the machine used: |
|
accelerate config |
|
Here is a sample config for deepspeed zero3: |
|
compute_environment: LOCAL_MACHINE |
|
debug: false |
|
deepspeed_config: |
|
gradient_accumulation_steps: 1 |
|
offload_optimizer_device: none |
|
offload_param_device: none |
|
zero3_init_flag: true |
|
zero3_save_16bit_model: true |
|
zero_stage: 3 |
|
distributed_type: DEEPSPEED |
|
downcast_bf16: 'no' |
|
enable_cpu_affinity: false |
|
machine_rank: 0 |
|
main_training_function: main |
|
mixed_precision: bf16 |
|
num_machines: 1 |
|
num_processes: 4 |
|
rdzv_backend: static |
|
same_network: true |
|
tpu_env: [] |
|
tpu_use_cluster: false |
|
tpu_use_sudo: false |
|
use_cpu: false |
|
3. check accelerate config: |
|
accelerate env |
|
4. Run the code: |
|
accelerate launch sample_finetune.py |
|
""" |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
|
|
|
|
training_config = { |
|
"bf16": True, |
|
"do_eval": False, |
|
"learning_rate": 5.0e-06, |
|
"log_level": "info", |
|
"logging_steps": 20, |
|
"logging_strategy": "steps", |
|
"lr_scheduler_type": "cosine", |
|
"num_train_epochs": 1, |
|
"max_steps": -1, |
|
"output_dir": "./checkpoint_dir", |
|
"overwrite_output_dir": True, |
|
"per_device_eval_batch_size": 4, |
|
"per_device_train_batch_size": 4, |
|
"remove_unused_columns": True, |
|
"save_steps": 100, |
|
"save_total_limit": 1, |
|
"seed": 0, |
|
"gradient_checkpointing": True, |
|
"gradient_checkpointing_kwargs":{"use_reentrant": False}, |
|
"gradient_accumulation_steps": 1, |
|
"warmup_ratio": 0.2, |
|
} |
|
|
|
peft_config = { |
|
"r": 16, |
|
"lora_alpha": 32, |
|
"lora_dropout": 0.05, |
|
"bias": "none", |
|
"task_type": "CAUSAL_LM", |
|
"target_modules": "all-linear", |
|
"modules_to_save": None, |
|
} |
|
train_conf = TrainingArguments(**training_config) |
|
peft_conf = LoraConfig(**peft_config) |
|
|
|
|
|
|
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%Y-%m-%d %H:%M:%S", |
|
handlers=[logging.StreamHandler(sys.stdout)], |
|
) |
|
log_level = train_conf.get_process_log_level() |
|
logger.setLevel(log_level) |
|
datasets.utils.logging.set_verbosity(log_level) |
|
transformers.utils.logging.set_verbosity(log_level) |
|
transformers.utils.logging.enable_default_handler() |
|
transformers.utils.logging.enable_explicit_format() |
|
|
|
|
|
logger.warning( |
|
f"Process rank: {train_conf.local_rank}, device: {train_conf.device}, n_gpu: {train_conf.n_gpu}" |
|
+ f" distributed training: {bool(train_conf.local_rank != -1)}, 16-bits training: {train_conf.fp16}" |
|
) |
|
logger.info(f"Training/evaluation parameters {train_conf}") |
|
logger.info(f"PEFT parameters {peft_conf}") |
|
|
|
|
|
|
|
|
|
|
|
checkpoint_path = "microsoft/Phi-3-medium-4k-instruct" |
|
|
|
model_kwargs = dict( |
|
use_cache=False, |
|
trust_remote_code=True, |
|
attn_implementation="flash_attention_2", |
|
torch_dtype=torch.bfloat16, |
|
device_map=None |
|
) |
|
model = AutoModelForCausalLM.from_pretrained(checkpoint_path, **model_kwargs) |
|
tokenizer = AutoTokenizer.from_pretrained(checkpoint_path) |
|
tokenizer.model_max_length = 2048 |
|
tokenizer.pad_token = tokenizer.unk_token |
|
tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids(tokenizer.pad_token) |
|
tokenizer.padding_side = 'right' |
|
|
|
|
|
|
|
|
|
|
|
def apply_chat_template( |
|
example, |
|
tokenizer, |
|
): |
|
messages = example["messages"] |
|
example["text"] = tokenizer.apply_chat_template( |
|
messages, tokenize=False, add_generation_prompt=False) |
|
return example |
|
|
|
raw_dataset = load_dataset("HuggingFaceH4/ultrachat_200k") |
|
train_dataset = raw_dataset["train_sft"] |
|
test_dataset = raw_dataset["test_sft"] |
|
column_names = list(train_dataset.features) |
|
|
|
processed_train_dataset = train_dataset.map( |
|
apply_chat_template, |
|
fn_kwargs={"tokenizer": tokenizer}, |
|
num_proc=10, |
|
remove_columns=column_names, |
|
desc="Applying chat template to train_sft", |
|
) |
|
|
|
processed_test_dataset = test_dataset.map( |
|
apply_chat_template, |
|
fn_kwargs={"tokenizer": tokenizer}, |
|
num_proc=10, |
|
remove_columns=column_names, |
|
desc="Applying chat template to test_sft", |
|
) |
|
|
|
|
|
|
|
|
|
|
|
trainer = SFTTrainer( |
|
model=model, |
|
args=train_conf, |
|
peft_config=peft_conf, |
|
train_dataset=processed_train_dataset, |
|
eval_dataset=processed_test_dataset, |
|
max_seq_length=2048, |
|
dataset_text_field="text", |
|
tokenizer=tokenizer, |
|
packing=True |
|
) |
|
train_result = trainer.train() |
|
metrics = train_result.metrics |
|
trainer.log_metrics("train", metrics) |
|
trainer.save_metrics("train", metrics) |
|
trainer.save_state() |
|
|
|
|
|
|
|
|
|
|
|
tokenizer.padding_side = 'left' |
|
metrics = trainer.evaluate() |
|
metrics["eval_samples"] = len(processed_test_dataset) |
|
trainer.log_metrics("eval", metrics) |
|
trainer.save_metrics("eval", metrics) |
|
|
|
|
|
|
|
|
|
|
|
trainer.save_model(train_conf.output_dir) |