|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...) on a text file or a dataset. |
|
|
|
Here is the full list of checkpoints on the hub that can be fine-tuned by this script: |
|
https://huggingface.co./models?filter=text-generation |
|
""" |
|
|
|
|
|
import logging |
|
import math |
|
import os |
|
import sys |
|
from dataclasses import dataclass, field |
|
from typing import Optional |
|
from pathlib import Path |
|
import datasets |
|
import torch |
|
from build_dataset import build_instruction_dataset, DataCollatorForSupervisedDataset |
|
import transformers |
|
from transformers import ( |
|
CONFIG_MAPPING, |
|
AutoConfig, |
|
AutoModelForCausalLM, |
|
LlamaForCausalLM, |
|
LlamaTokenizer, |
|
AutoTokenizer, |
|
HfArgumentParser, |
|
Trainer, |
|
TrainingArguments, |
|
set_seed, |
|
) |
|
from transformers.trainer_utils import get_last_checkpoint |
|
from transformers.utils import send_example_telemetry |
|
from transformers.utils.versions import require_version |
|
|
|
from peft import LoraConfig, TaskType, get_peft_model, PeftModel, get_peft_model_state_dict |
|
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR |
|
|
|
IGNORE_INDEX = -100 |
|
DEFAULT_PAD_TOKEN = "[PAD]" |
|
DEFAULT_EOS_TOKEN = "</s>" |
|
DEFAULT_BOS_TOKEN = "<s>" |
|
DEFAULT_UNK_TOKEN = "<unk>" |
|
|
|
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt") |
|
|
|
|
|
class SavePeftModelCallback(transformers.TrainerCallback): |
|
def save_model(self, args, state, kwargs): |
|
if state.best_model_checkpoint is not None: |
|
checkpoint_folder = os.path.join(state.best_model_checkpoint, "sft_lora_model") |
|
else: |
|
checkpoint_folder = os.path.join(args.output_dir, f"{PREFIX_CHECKPOINT_DIR}-{state.global_step}") |
|
|
|
peft_model_path = os.path.join(checkpoint_folder, "sft_lora_model") |
|
kwargs["model"].save_pretrained(peft_model_path) |
|
|
|
if "tokenizer" in kwargs: |
|
kwargs["tokenizer"].save_pretrained(peft_model_path) |
|
else: |
|
kwargs["processing_class"].save_pretrained(peft_model_path) |
|
|
|
|
|
def on_save(self, args, state, control, **kwargs): |
|
self.save_model(args, state, kwargs) |
|
return control |
|
|
|
def on_train_end(self, args, state, control, **kwargs): |
|
peft_model_path = os.path.join(args.output_dir, "sft_lora_model") |
|
kwargs["model"].save_pretrained(peft_model_path) |
|
|
|
if "tokenizer" in kwargs: |
|
kwargs["tokenizer"].save_pretrained(peft_model_path) |
|
else: |
|
kwargs["processing_class"].save_pretrained(peft_model_path) |
|
|
|
|
|
|
|
@dataclass |
|
class ModelArguments: |
|
""" |
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. |
|
""" |
|
|
|
model_name_or_path: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"The model checkpoint for weights initialization.Don't set if you want to train a model from scratch." |
|
) |
|
}, |
|
) |
|
tokenizer_name_or_path: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"The tokenizer for weights initialization.Don't set if you want to train a model from scratch." |
|
) |
|
}, |
|
) |
|
|
|
config_overrides: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"Override some existing default config settings when a model is trained from scratch. Example: " |
|
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" |
|
) |
|
}, |
|
) |
|
config_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} |
|
) |
|
tokenizer_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} |
|
) |
|
cache_dir: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, |
|
) |
|
use_fast_tokenizer: bool = field( |
|
default=True, |
|
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, |
|
) |
|
model_revision: str = field( |
|
default="main", |
|
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, |
|
) |
|
use_auth_token: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Will use the token generated when running `huggingface-cli login` (necessary to use this script " |
|
"with private models)." |
|
) |
|
}, |
|
) |
|
torch_dtype: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"Override the default `torch.dtype` and load the model under this dtype. If `auto` is passed, the " |
|
"dtype will be automatically derived from the model's weights." |
|
), |
|
"choices": ["auto", "bfloat16", "float16", "float32"], |
|
}, |
|
) |
|
|
|
def __post_init__(self): |
|
if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): |
|
raise ValueError( |
|
"--config_overrides can't be used in combination with --config_name or --model_name_or_path" |
|
) |
|
|
|
|
|
@dataclass |
|
class DataTrainingArguments: |
|
""" |
|
Arguments pertaining to what data we are going to input our model for training and eval. |
|
""" |
|
|
|
dataset_dir: Optional[str] = field( |
|
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} |
|
) |
|
|
|
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) |
|
validation_file: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, |
|
) |
|
|
|
overwrite_cache: bool = field( |
|
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} |
|
) |
|
validation_split_percentage: Optional[float] = field( |
|
default=0.05, |
|
metadata={ |
|
"help": "The percentage of the train set used as validation set in case there's no validation split" |
|
}, |
|
) |
|
preprocessing_num_workers: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "The number of processes to use for the preprocessing."}, |
|
) |
|
keep_linebreaks: bool = field( |
|
default=True, metadata={"help": "Whether to keep line breaks when using TXT files or not."} |
|
) |
|
data_cache_dir: Optional[str] = field(default=None, metadata={"help": "The datasets processed stored"}) |
|
|
|
max_seq_length: Optional[int] = field(default=512) |
|
|
|
|
|
@dataclass |
|
class MyTrainingArguments(TrainingArguments): |
|
trainable : Optional[str] = field(default="q_proj,v_proj") |
|
lora_rank : Optional[int] = field(default=8) |
|
lora_dropout : Optional[float] = field(default=0.1) |
|
lora_alpha : Optional[float] = field(default=32.) |
|
modules_to_save : Optional[str] = field(default=None) |
|
peft_path : Optional[str] = field(default=None) |
|
force_resize_embeddings: bool = field(default=False) |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def main(): |
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, MyTrainingArguments)) |
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): |
|
|
|
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) |
|
else: |
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
|
|
send_example_telemetry("run_clm", model_args, data_args) |
|
|
|
|
|
logging.basicConfig(format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO, |
|
handlers=[logging.StreamHandler(sys.stdout)],) |
|
|
|
|
|
if training_args.should_log: |
|
|
|
transformers.utils.logging.set_verbosity_info() |
|
|
|
log_level = training_args.get_process_log_level() |
|
logger.setLevel(log_level) |
|
datasets.utils.logging.set_verbosity(log_level) |
|
transformers.utils.logging.set_verbosity(log_level) |
|
transformers.utils.logging.enable_default_handler() |
|
transformers.utils.logging.enable_explicit_format() |
|
|
|
|
|
|
|
logger.warning( |
|
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" |
|
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" |
|
) |
|
|
|
|
|
last_checkpoint = None |
|
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: |
|
last_checkpoint = get_last_checkpoint(training_args.output_dir) |
|
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: |
|
raise ValueError( |
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. " |
|
"Use --overwrite_output_dir to overcome." |
|
) |
|
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: |
|
logger.info( |
|
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " |
|
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." |
|
) |
|
|
|
|
|
set_seed(training_args.seed) |
|
|
|
config_kwargs = { |
|
"cache_dir": model_args.cache_dir, |
|
"revision": model_args.model_revision, |
|
"use_auth_token": True if model_args.use_auth_token else None, |
|
} |
|
if model_args.config_name: |
|
config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs) |
|
elif model_args.model_name_or_path: |
|
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs) |
|
else: |
|
config = CONFIG_MAPPING[model_args.model_type]() |
|
logger.warning("You are instantiating a new config instance from scratch.") |
|
if model_args.config_overrides is not None: |
|
logger.info(f"Overriding config: {model_args.config_overrides}") |
|
config.update_from_string(model_args.config_overrides) |
|
logger.info(f"New config: {config}") |
|
|
|
tokenizer_kwargs = { |
|
"cache_dir": model_args.cache_dir, |
|
"use_fast": model_args.use_fast_tokenizer, |
|
"revision": model_args.model_revision, |
|
"use_auth_token": True if model_args.use_auth_token else None, |
|
} |
|
if model_args.tokenizer_name: |
|
tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs) |
|
elif model_args.tokenizer_name_or_path: |
|
tokenizer = LlamaTokenizer.from_pretrained(model_args.tokenizer_name_or_path, **tokenizer_kwargs) |
|
else: |
|
raise ValueError( |
|
"You are instantiating a new tokenizer from scratch. This is not supported by this script." |
|
"You can do it from another script, save it, and load it from here, using --tokenizer_name." |
|
) |
|
|
|
|
|
if tokenizer.pad_token is None: |
|
print(f"Adding pad token {DEFAULT_PAD_TOKEN}") |
|
tokenizer.add_special_tokens(dict(pad_token=DEFAULT_PAD_TOKEN)) |
|
|
|
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer) |
|
eval_dataset=None |
|
train_dataset = None |
|
|
|
if training_args.do_train: |
|
with training_args.main_process_first(desc="loading and tokenization"): |
|
path = Path(data_args.dataset_dir) |
|
files = [os.path.join(path,file.name) for file in path.glob("*.json")] |
|
logger.info(f"Training files: {' '.join(files)}") |
|
train_dataset = build_instruction_dataset( |
|
data_path=files, |
|
tokenizer=tokenizer, |
|
max_seq_length=data_args.max_seq_length, |
|
data_cache_dir = None, |
|
preprocessing_num_workers = data_args.preprocessing_num_workers) |
|
logger.info(f"Num train_samples {len(train_dataset)}") |
|
logger.info("training example:") |
|
logger.info(tokenizer.decode(train_dataset[0]['input_ids'])) |
|
if training_args.do_eval: |
|
with training_args.main_process_first(desc="loading and tokenization"): |
|
files = [data_args.validation_file] |
|
logger.info(f"Evaluation files: {' '.join(files)}") |
|
eval_dataset = build_instruction_dataset( |
|
data_path=files, |
|
tokenizer=tokenizer, |
|
max_seq_length=data_args.max_seq_length, |
|
data_cache_dir = None, |
|
preprocessing_num_workers = data_args.preprocessing_num_workers) |
|
logger.info(f"Num eval_samples {len(eval_dataset)}") |
|
logger.info("eval example:") |
|
logger.info(tokenizer.decode(eval_dataset[0]['input_ids'])) |
|
|
|
if model_args.model_name_or_path: |
|
torch_dtype = ( |
|
model_args.torch_dtype |
|
if model_args.torch_dtype in ["auto", None] |
|
else getattr(torch, model_args.torch_dtype) |
|
) |
|
model = LlamaForCausalLM.from_pretrained( |
|
model_args.model_name_or_path, |
|
from_tf=bool(".ckpt" in model_args.model_name_or_path), |
|
config=config, |
|
cache_dir=model_args.cache_dir, |
|
revision=model_args.model_revision, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
torch_dtype=torch_dtype, |
|
low_cpu_mem_usage=True |
|
) |
|
else: |
|
model = AutoModelForCausalLM.from_config(config) |
|
n_params = sum({p.data_ptr(): p.numel() for p in model.parameters()}.values()) |
|
logger.info(f"Training new model from scratch - Total size={n_params/2**20:.2f}M params") |
|
|
|
logger.info(f"len(tokenizer):{len(tokenizer)}") |
|
embedding_size = model.get_input_embeddings().weight.shape[0] |
|
if len(tokenizer) != embedding_size: |
|
logger.info("resize the embedding size by the size of the tokenizer") |
|
model.resize_token_embeddings(len(tokenizer)) |
|
|
|
if training_args.peft_path is not None: |
|
logger.info("Peft from pre-trained model") |
|
model = PeftModel.from_pretrained(model, training_args.peft_path) |
|
else: |
|
logger.info("Init new peft model") |
|
target_modules = training_args.trainable.split(',') |
|
modules_to_save = training_args.modules_to_save |
|
if modules_to_save is not None: |
|
modules_to_save = modules_to_save.split(',') |
|
lora_rank = training_args.lora_rank |
|
lora_dropout = training_args.lora_dropout |
|
lora_alpha = training_args.lora_alpha |
|
logger.info(f"target_modules: {target_modules}") |
|
logger.info(f"lora_rank: {lora_rank}") |
|
peft_config = LoraConfig( |
|
task_type=TaskType.CAUSAL_LM, |
|
target_modules=target_modules, |
|
inference_mode=False, |
|
r=lora_rank, lora_alpha=lora_alpha, |
|
lora_dropout=lora_dropout, |
|
modules_to_save=modules_to_save) |
|
model = get_peft_model(model, peft_config) |
|
|
|
|
|
model.print_trainable_parameters() |
|
logger.info(f"model.modules_to_save: {model.modules_to_save}") |
|
old_state_dict = model.state_dict |
|
model.state_dict = ( |
|
lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict()) |
|
).__get__(model, type(model)) |
|
|
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=train_dataset, |
|
eval_dataset=eval_dataset, |
|
tokenizer=tokenizer, |
|
data_collator=data_collator, |
|
) |
|
trainer.add_callback(SavePeftModelCallback) |
|
|
|
|
|
if training_args.do_train: |
|
checkpoint = None |
|
if training_args.resume_from_checkpoint is not None: |
|
checkpoint = training_args.resume_from_checkpoint |
|
elif last_checkpoint is not None: |
|
checkpoint = last_checkpoint |
|
train_result = trainer.train(resume_from_checkpoint=checkpoint) |
|
|
|
metrics = train_result.metrics |
|
|
|
metrics["train_samples"] = len(train_dataset) |
|
|
|
trainer.log_metrics("train", metrics) |
|
trainer.save_metrics("train", metrics) |
|
trainer.save_state() |
|
|
|
|
|
if training_args.do_eval: |
|
logger.info("*** Evaluate ***") |
|
|
|
metrics = trainer.evaluate() |
|
metrics["eval_samples"] =len(eval_dataset) |
|
try: |
|
perplexity = math.exp(metrics["eval_loss"]) |
|
except OverflowError: |
|
perplexity = float("inf") |
|
metrics["perplexity"] = perplexity |
|
|
|
trainer.log_metrics("eval", metrics) |
|
trainer.save_metrics("eval", metrics) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|