File size: 27,117 Bytes
729bc74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5e200c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
729bc74
 
 
 
 
 
 
 
 
a5e200c
729bc74
 
a5e200c
 
 
 
 
 
 
 
 
729bc74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5e200c
729bc74
 
 
 
 
 
 
 
 
 
 
 
 
 
a5e200c
729bc74
 
a5e200c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
729bc74
 
 
 
 
 
 
 
a5e200c
729bc74
 
a5e200c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
729bc74
 
 
 
 
 
 
a5e200c
729bc74
 
a5e200c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
729bc74
 
 
 
 
 
 
 
 
a5e200c
729bc74
 
a5e200c
 
 
 
 
 
 
 
 
 
 
 
 
729bc74
 
 
 
 
 
 
 
 
 
a5e200c
729bc74
 
a5e200c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
729bc74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5e200c
729bc74
 
a5e200c
 
 
 
 
 
 
 
 
 
 
 
729bc74
 
 
 
 
 
a5e200c
729bc74
 
a5e200c
 
 
 
 
 
 
 
 
 
 
 
729bc74
a5e200c
729bc74
a5e200c
 
 
 
 
 
 
 
729bc74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "1e6d4978-4f0f-4268-aa23-d864857bd6c8",
   "metadata": {},
   "source": [
    "# 4.6 基于llama的基因大模型持续预训练"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2c201732-e736-463c-8446-637bf517479f",
   "metadata": {},
   "source": [
    "LLaMA(**Large Language Model Meta AI**)是由 Meta(Facebook)开发的一系列大型语言模型,专注于提供高性能和高效的大语言模型,面向学术研究和开发社区。LLaMA 系列主要强调训练效率、模型性能和对计算资源的高效利用,是 GPT 系列模型的有力竞争者之一。\n",
    "\n",
    "---\n",
    "\n",
    "### **1. LLaMA 模型概述**\n",
    "\n",
    "#### **1.1 LLaMA 1**\n",
    "- **发布**:2023 年 2 月。\n",
    "- **模型参数规模**:\n",
    "  - 7B(70 亿)\n",
    "  - 13B(130 亿)\n",
    "  - 33B(330 亿)\n",
    "  - 65B(650 亿)\n",
    "- **特点**:\n",
    "  - 专注于效率:与 GPT-3 等模型相比,LLaMA 在相同的训练成本下实现了更高的性能。\n",
    "  - 针对研究开放:提供预训练模型权重供研究使用。\n",
    "  - 使用高质量的数据:模型训练使用大量从网络中筛选的高质量文本数据,包括维基百科、书籍和其他高质量来源。\n",
    "- **性能**:\n",
    "  - 在许多 NLP 任务中,LLaMA 的性能超过 GPT-3 和其他同类模型。\n",
    "  - 参数规模较小的版本(如 LLaMA-13B)性能可与 GPT-3(175B 参数)媲美。\n",
    "\n",
    "#### **1.2 LLaMA 2**\n",
    "- **发布**:2023 年 7 月。\n",
    "- **改进**:\n",
    "  - 增强的训练数据:相比 LLaMA 1,使用了更多的高质量数据。\n",
    "  - 引入微调版本:发布了开箱即用的对话模型(LLaMA 2-Chat)。\n",
    "  - 更好的开源支持:LLaMA 2 在商业用途上比 LLaMA 1 更加开放。\n",
    "- **模型参数规模**:\n",
    "  - 7B(70 亿)\n",
    "  - 13B(130 亿)\n",
    "  - 70B(700 亿)\n",
    "- **性能**:\n",
    "  - LLaMA 2 的性能相比 LLaMA 1 有显著提升。\n",
    "  - LLaMA 2-Chat 在对话任务中的表现优于许多现有开源模型。\n",
    "  - 在多个标准基准(如 MMLU)上超过 GPT-4 和 Claude 的开源实现。\n",
    "\n",
    "---\n",
    "\n",
    "### **2. LLaMA 的关键技术特点**\n",
    "\n",
    "#### **2.1 高效的架构设计**\n",
    "- 基于 Transformer 架构。\n",
    "- 针对训练效率和推理速度进行了优化,适合研究和开发。\n",
    "\n",
    "#### **2.2 模型压缩**\n",
    "- 提供更小的参数规模(如 7B 和 13B),以便在更低的计算资源上运行。\n",
    "- 在性能与参数量之间实现了很好的平衡。\n",
    "\n",
    "#### **2.3 训练数据**\n",
    "- 使用从互联网中提取的高质量数据,注重数据清洗和筛选,避免低质量文本对模型的负面影响。\n",
    "\n",
    "#### **2.4 微调能力**\n",
    "- 支持指令微调(Instruction Tuning)和 RLHF(基于人类反馈的强化学习),特别是在 LLaMA 2-Chat 模型中表现优异。\n",
    "\n",
    "---\n",
    "\n",
    "### **3. LLaMA 的性能对比**\n",
    "\n",
    "#### **与 GPT-3 比较**\n",
    "- LLaMA 1-13B 参数模型在许多任务上的性能接近 GPT-3-175B。\n",
    "- LLaMA 2-70B 在多个任务上超过 GPT-3。\n",
    "\n",
    "#### **与其他开源模型比较**\n",
    "- LLaMA 2 在许多基准测试中优于其他开源模型(如 Falcon 和 MPT)。\n",
    "- LLaMA 2-Chat 提供了与 ChatGPT 类似的对话能力,适用于对话任务。\n",
    "\n",
    "---\n",
    "\n",
    "### **4. 应用场景**\n",
    "\n",
    "1. **研究**:\n",
    "   - 开源权重适合学术研究,推动了对大语言模型的进一步探索。\n",
    "\n",
    "2. **对话系统**:\n",
    "   - LLaMA 2-Chat 专为对话任务设计,适合开发智能客服、聊天机器人等应用。\n",
    "\n",
    "3. **生成任务**:\n",
    "   - 支持文本生成、补全、摘要等任务。\n",
    "\n",
    "4. **微调与定制**:\n",
    "   - 可以基于特定领域数据进行微调,如医学、法律、教育等领域的专用模型。\n",
    "\n",
    "---\n",
    "\n",
    "### **5. 开源与获取方式**\n",
    "\n",
    "#### **1. 开源**\n",
    "- LLaMA 1:需要申请权限才能获得模型权重。\n",
    "- LLaMA 2:更加开放,允许商业用途,模型和权重可以通过 Meta 的合作平台获取(如 Hugging Face 和 AWS)。\n",
    "\n",
    "#### **2. 下载与使用**\n",
    "使用 Hugging Face 加载模型:\n",
    "```python\n",
    "from transformers import AutoModelForCausalLM, AutoTokenizer\n",
    "\n",
    "model_name = \"meta-llama/Llama-2-7b-hf\"  # 替换为具体模型\n",
    "tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
    "model = AutoModelForCausalLM.from_pretrained(model_name)\n",
    "\n",
    "# 使用模型生成文本\n",
    "inputs = tokenizer(\"Hello, how are you?\", return_tensors=\"pt\")\n",
    "outputs = model.generate(**inputs, max_length=50)\n",
    "print(tokenizer.decode(outputs[0], skip_special_tokens=True))\n",
    "```\n",
    "\n",
    "---\n",
    "\n",
    "### **6. 总结**\n",
    "\n",
    "#### **优势**\n",
    "- **高性能**:在多个基准任务上表现出色。\n",
    "- **高效训练**:小参数模型能与大模型媲美。\n",
    "- **开放性**:LLaMA 2 提供了较为开放的商用许可。\n",
    "\n",
    "#### **局限**\n",
    "- 模型需要高质量数据和强大算力训练,对推理设备也有一定要求。\n",
    "\n",
    "LLaMA 系列以其高效和开放的特点,为大模型研究和应用带来了强大动力,是当前大语言模型生态的重要组成部分。"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7fb0d648-f891-47b9-a644-af5263fa9718",
   "metadata": {},
   "source": [
    "---\n",
    "---"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8b3c9ebb-213b-4dc4-a712-5a819fea3197",
   "metadata": {},
   "source": [
    "**大模型的持续预训练**(Continual Pretraining of Large Models)是指在基础预训练模型(如 GPT、BERT 等)的基础上,通过引入新的数据或特定领域的数据继续进行预训练的过程。这一过程旨在让模型在特定场景或任务中表现更好,同时保留其通用能力。\n",
    "\n",
    "---\n",
    "\n",
    "### **1. 持续预训练的概念**\n",
    "\n",
    "持续预训练是一种在通用大模型的预训练基础上,进一步优化和适配模型的方法,主要包括以下两种场景:\n",
    "1. **领域适配**:\n",
    "   - 将预训练模型在特定领域的数据上继续训练,使其对该领域的语料理解更深刻,例如法律、医学、金融等领域。\n",
    "2. **性能优化**:\n",
    "   - 通过引入更多的通用数据或多样化的数据类型,扩展模型的通用能力,提高性能。\n",
    "\n",
    "---\n",
    "\n",
    "### **2. 持续预训练的目标**\n",
    "\n",
    "1. **提升领域性能**:\n",
    "   - 在特定领域任务上,模型能够更好地理解特定领域的语言模式和知识。\n",
    "   \n",
    "2. **增强模型鲁棒性**:\n",
    "   - 通过引入新的数据或增强数据多样性,使模型对未见数据表现更稳定。\n",
    "\n",
    "3. **优化资源利用**:\n",
    "   - 通过复用已有的大模型权重,只需训练少量额外步骤,避免从零开始重新训练模型。\n",
    "\n",
    "---\n",
    "\n",
    "### **3. 持续预训练的步骤**\n",
    "\n",
    "#### **(1)数据准备**\n",
    "- **领域数据**:针对特定领域(如医学、法律、科技)收集高质量语料。\n",
    "- **新语料整合**:补充模型未见过的多样化语料。\n",
    "- **数据清洗**:确保数据无噪声、语言风格一致。\n",
    "\n",
    "#### **(2)模型初始化**\n",
    "- 使用现有的预训练模型作为初始权重,例如 Hugging Face 提供的 GPT-2 或 BERT 模型。\n",
    "\n",
    "#### **(3)训练设置**\n",
    "- **超参数调整**:\n",
    "  - 通常使用较小的学习率(例如 `1e-5` 或 `2e-5`)以避免破坏已有的知识。\n",
    "- **训练策略**:\n",
    "  - 冻结部分参数(如嵌入层或前几层)以保留通用能力,仅调整高层或新加入的部分。\n",
    "\n",
    "#### **(4)评估和验证**\n",
    "- 使用领域任务的数据集对模型进行评估,验证其在目标任务中的改进效果。\n",
    "\n",
    "---\n",
    "\n",
    "### **4. 持续预训练的常见方法**\n",
    "\n",
    "#### **(1)全量持续预训练**\n",
    "- 对整个模型的参数进行调整。\n",
    "- **优点**:适合较大规模的新数据训练,能显著提升领域性能。\n",
    "- **缺点**:计算资源需求大,可能导致模型过拟合。\n",
    "\n",
    "#### **(2)冻结部分参数**\n",
    "- 冻结低层参数,仅微调高层。\n",
    "- **优点**:保留通用知识,减少计算开销。\n",
    "- **缺点**:对领域特定知识的适配可能不足。\n",
    "\n",
    "#### **(3)参数高效微调(PEFT)**\n",
    "- 使用 PEFT 方法(如 LoRA、Adapter)进行预训练:\n",
    "  - **LoRA**:通过低秩矩阵分解,微调部分关键模块。\n",
    "  - **Adapter**:在 Transformer 层中插入小型适配模块。\n",
    "- **优点**:显著减少需要更新的参数量。\n",
    "\n",
    "---\n",
    "\n",
    "### **5. 持续预训练的典型应用**\n",
    "\n",
    "1. **领域适配**\n",
    "   - **医学**:将预训练模型在 PubMed 或生物医学数据集上进行持续预训练。\n",
    "   - **法律**:使用法律文档进一步训练基础模型。\n",
    "   - **金融**:通过金融新闻、报告语料提升模型在金融领域的表现。\n",
    "\n",
    "2. **多语言扩展**\n",
    "   - 引入多语言语料,扩展模型的多语言能力。\n",
    "\n",
    "3. **数据更新**\n",
    "   - 持续加入新数据(如时事新闻)以适配最新语言模式。\n",
    "\n",
    "4. **特殊任务优化**\n",
    "   - 针对特定任务(如代码生成、对话)引入专用数据进行训练。\n",
    "\n",
    "---\n",
    "\n",
    "### **6. 实现持续预训练的代码示例**\n",
    "\n",
    "以下示例基于 Hugging Face 实现 GPT-2 的持续预训练:\n",
    "\n",
    "```python\n",
    "from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments\n",
    "from datasets import load_dataset\n",
    "\n",
    "# 1. 加载预训练模型和分词器\n",
    "model_name = \"gpt2\"\n",
    "tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
    "model = AutoModelForCausalLM.from_pretrained(model_name)\n",
    "\n",
    "# 2. 加载新语料数据\n",
    "dataset = load_dataset(\"text\", data_files={\"train\": \"domain_corpus.txt\"})\n",
    "\n",
    "# 3. 数据预处理\n",
    "def tokenize_function(examples):\n",
    "    return tokenizer(examples[\"text\"], truncation=True, max_length=1024, padding=\"max_length\")\n",
    "\n",
    "tokenized_dataset = dataset.map(tokenize_function, batched=True)\n",
    "\n",
    "# 4. 设置训练参数\n",
    "training_args = TrainingArguments(\n",
    "    output_dir=\"./gpt2_domain_adapted\",\n",
    "    overwrite_output_dir=True,\n",
    "    per_device_train_batch_size=4,\n",
    "    num_train_epochs=3,\n",
    "    learning_rate=5e-5,\n",
    "    save_steps=500,\n",
    "    save_total_limit=2,\n",
    "    logging_dir=\"./logs\",\n",
    "    evaluation_strategy=\"no\",  # 评估策略可以根据需要调整\n",
    "    fp16=True,  # 混合精度训练\n",
    ")\n",
    "\n",
    "# 5. 定义 Trainer 并启动训练\n",
    "trainer = Trainer(\n",
    "    model=model,\n",
    "    args=training_args,\n",
    "    train_dataset=tokenized_dataset[\"train\"],\n",
    "    tokenizer=tokenizer,\n",
    ")\n",
    "\n",
    "trainer.train()\n",
    "\n",
    "# 6. 保存模型\n",
    "model.save_pretrained(\"./gpt2_domain_adapted\")\n",
    "tokenizer.save_pretrained(\"./gpt2_domain_adapted\")\n",
    "```\n",
    "\n",
    "---\n",
    "\n",
    "### **7. 持续预训练的挑战**\n",
    "\n",
    "1. **灾难性遗忘**:\n",
    "   - 持续预训练可能导致模型丧失之前学到的知识。\n",
    "   - **解决方法**:使用少量原始数据进行联合训练。\n",
    "\n",
    "2. **计算资源需求**:\n",
    "   - 需要大量显存和算力,特别是对于大规模模型和数据。\n",
    "\n",
    "3. **数据质量和多样性**:\n",
    "   - 新引入的数据可能包含噪声,影响模型性能。\n",
    "\n",
    "---\n",
    "\n",
    "### **8. 持续预训练的优势**\n",
    "\n",
    "- 提高特定领域或任务的性能。\n",
    "- 更高效地利用已有模型权重,避免从头训练。\n",
    "- 保留原始模型的通用能力,同时增强领域适应性。\n",
    "\n",
    "---\n",
    "\n",
    "### **总结**\n",
    "\n",
    "持续预训练是适配领域任务和提升模型性能的重要方法,通过引入新数据或优化模型训练策略,可以让大模型在特定场景中表现更优。配合参数高效微调方法(如 LoRA),还可显著降低计算开销,提升训练效率。这种技术在学术研究、工业应用和前沿领域(如法律、医学等)中均具有广泛价值。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ca41ad33-18fb-44da-8f79-0380b5c9dcaa",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "id": "3038550c-cc92-45c9-8bb4-46c58688bfc5",
   "metadata": {},
   "source": [
    "## 本节任务\n",
    "本节任务是基于llama。训练一个能够处理dna和protein蛋白质数据的基础预训练大模型,数据为第一章中的预训练数据,包括英文数据。"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "aec90d65-ac62-4394-a526-ca62d8bdbad4",
   "metadata": {},
   "source": [
    "## 环境设置\n",
    "并行环境对transformer、peft等的版本要求比较高,如果版本不匹配可能会出现各种异常问题\n",
    "之前的课程,都是单GPU运行,一般不存在版本问题,默认安装的都是最新版本。但运行并行环境时,需要确认下版本再运行,本课程运行并行环境如下:\n",
    "\n",
    "* Python 3.12.3\n",
    "* transformers                   4.45.2\n",
    "* peft                           0.3.0.dev0\n",
    "* deepspeed                      0.15.2\n",
    "* accelerate                     1.0.0\n",
    "\n",
    "如果不是,可以重新安装即可:\n",
    "```\n",
    "pip install transformers==4.45.2 deepspeed==0.15.2 accelerate==1.0.0\n",
    "\n",
    "#peft参考使用的是chinese llama的版本,需要git安装\n",
    "\n",
    "git clone https://github.com/huggingface/peft.git\n",
    "\n",
    "cd peft\n",
    "\n",
    "git checkout 13e53fc\n",
    "\n",
    "pip install . \n",
    "```\n",
    "如果有环境问题,可以查看本目录下的pip_list.txt"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b1bd33b8-2e05-4b59-9d8f-c48de194cfd6",
   "metadata": {},
   "source": [
    "## 代码运行\n",
    "\n",
    "```\n",
    "# 复制第一章训练数据,包括dna,protein,还有英文数据,添加英文数据是为了避免遗忘问题\n",
    "\n",
    "mkdir train_data\n",
    "cp ../01-data_env/data/*.txt train_data/\n",
    "使用这些数据,6卡4090大概大致需要训练16个小时,autodl也需要近200块钱了。\n",
    "\n",
    "建议学习时,可以使用1/10的数据训练:\n",
    "awk ‘NR%10==1’ dna_1g.txt > dna.txt\n",
    "rm dna_1g.txt\n",
    "其他2类数据依次类推\n",
    "\n",
    "这样大概需要2到3个小时就能训练完成了\n",
    "\n",
    "\n",
    "#持续预训练\n",
    "./run_pt.sh\n",
    "\n",
    "#合并模型\n",
    "./merge_pt_model.sh\n",
    "\n",
    "```"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4960a36c-7529-4db8-b91d-df91245f79d9",
   "metadata": {},
   "source": [
    "## 模型验证"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "69b3e97f-a801-4264-a651-a854bcfba9c6",
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import AutoTokenizer, AutoConfig,AutoModel\n",
    "from transformers import DataCollatorForLanguageModeling\n",
    "from transformers import Trainer, TrainingArguments\n",
    "from transformers import  AutoConfig, AutoModelForCausalLM,LlamaForCausalLM,LlamaTokenizer\n",
    "from tokenizers import Tokenizer\n",
    "from datasets import load_dataset"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "339435d9-9379-4b30-ae8b-50feee1ba714",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "LlamaTokenizer(name_or_path='dnahlm-merge-hf', vocab_size=91643, model_max_length=1000000000000000019884624838656, is_fast=False, padding_side='right', truncation_side='right', special_tokens={'bos_token': '<s>', 'eos_token': '</s>', 'unk_token': '<unk>', 'pad_token': '</s>'}, clean_up_tokenization_spaces=False),  added_tokens_decoder={\n",
       "\t0: AddedToken(\"<unk>\", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),\n",
       "\t1: AddedToken(\"<s>\", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),\n",
       "\t2: AddedToken(\"</s>\", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),\n",
       "}"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "tokenizer = LlamaTokenizer.from_pretrained(\"dnahlm-merge-hf\")\n",
    "tokenizer.pad_token = tokenizer.eos_token\n",
    "tokenizer"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "d0f154bb-b1ab-4611-a14c-9b403043fd96",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "342e4ab139b64bb78f0429c2f92c8310",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Loading checkpoint shards:   0%|          | 0/3 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "LlamaForCausalLM(\n",
       "  (model): LlamaModel(\n",
       "    (embed_tokens): Embedding(91643, 4096, padding_idx=0)\n",
       "    (layers): ModuleList(\n",
       "      (0-31): 32 x LlamaDecoderLayer(\n",
       "        (self_attn): LlamaSdpaAttention(\n",
       "          (q_proj): Linear(in_features=4096, out_features=4096, bias=False)\n",
       "          (k_proj): Linear(in_features=4096, out_features=4096, bias=False)\n",
       "          (v_proj): Linear(in_features=4096, out_features=4096, bias=False)\n",
       "          (o_proj): Linear(in_features=4096, out_features=4096, bias=False)\n",
       "          (rotary_emb): LlamaRotaryEmbedding()\n",
       "        )\n",
       "        (mlp): LlamaMLP(\n",
       "          (gate_proj): Linear(in_features=4096, out_features=11008, bias=False)\n",
       "          (up_proj): Linear(in_features=4096, out_features=11008, bias=False)\n",
       "          (down_proj): Linear(in_features=11008, out_features=4096, bias=False)\n",
       "          (act_fn): SiLU()\n",
       "        )\n",
       "        (input_layernorm): LlamaRMSNorm((4096,), eps=1e-06)\n",
       "        (post_attention_layernorm): LlamaRMSNorm((4096,), eps=1e-06)\n",
       "      )\n",
       "    )\n",
       "    (norm): LlamaRMSNorm((4096,), eps=1e-06)\n",
       "    (rotary_emb): LlamaRotaryEmbedding()\n",
       "  )\n",
       "  (lm_head): Linear(in_features=4096, out_features=91643, bias=False)\n",
       ")"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "model = LlamaForCausalLM.from_pretrained(\"dnahlm-merge-hf\") #continue pretrain\n",
    "model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "792a9f78-1828-4695-9f6e-479a704ea7e8",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "LlamaConfig {\n",
       "  \"_name_or_path\": \"dnahlm-merge-hf\",\n",
       "  \"architectures\": [\n",
       "    \"LlamaForCausalLM\"\n",
       "  ],\n",
       "  \"attention_bias\": false,\n",
       "  \"attention_dropout\": 0.0,\n",
       "  \"bos_token_id\": 1,\n",
       "  \"eos_token_id\": 2,\n",
       "  \"head_dim\": 128,\n",
       "  \"hidden_act\": \"silu\",\n",
       "  \"hidden_size\": 4096,\n",
       "  \"initializer_range\": 0.02,\n",
       "  \"intermediate_size\": 11008,\n",
       "  \"max_position_embeddings\": 2048,\n",
       "  \"mlp_bias\": false,\n",
       "  \"model_type\": \"llama\",\n",
       "  \"num_attention_heads\": 32,\n",
       "  \"num_hidden_layers\": 32,\n",
       "  \"num_key_value_heads\": 32,\n",
       "  \"pad_token_id\": 0,\n",
       "  \"pretraining_tp\": 1,\n",
       "  \"rms_norm_eps\": 1e-06,\n",
       "  \"rope_scaling\": null,\n",
       "  \"rope_theta\": 10000.0,\n",
       "  \"tie_word_embeddings\": false,\n",
       "  \"torch_dtype\": \"float16\",\n",
       "  \"transformers_version\": \"4.45.2\",\n",
       "  \"use_cache\": true,\n",
       "  \"vocab_size\": 91643\n",
       "}"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from transformers import AutoConfig\n",
    "# 加载配置\n",
    "config = AutoConfig.from_pretrained('dnahlm-merge-hf')\n",
    "config"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "49021c65-54bb-4a97-a96d-b030cc3dcd13",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Test text:\n",
      " GCTGACTCTGCCAGGATGGAATGAAATTAGGTTGTTTTAATTATAATGTAAAGTCAGTTCTAGTCAGACATAGTCACATAGGCAAGTAAGGGAACCTAAAATTGCTTGGAAT,\n",
      "KCGFVGPMVHLKVHLEADVASSCRSAVIYLTSEEPFEGVLGLRLKEGIAITGCWPRWPDEMDERSAVWRVEPYTRHFGRVLYSFGV,\n",
      "The primary use of LLaMA is research on large language models, including\n",
      "Tokenized by DNA-LLaMA tokenizer:['▁GC', 'TGA', 'CT', 'C', 'TGCC', 'AGGATGG', 'AATG', 'AAATT', 'AGGTTG', 'TTTTAATT', 'ATAATGTAA', 'AGTCAG', 'TTCTAG', 'TCAG', 'ACATAG', 'TC', 'ACATAGG', 'CA', 'AGTAAGGG', 'AAC', 'CT', 'AAAATTGC', 'TTGG', 'AAT', ',', '<0x0A>', 'KCG', 'FVGP', 'MVHL', 'KV', 'HLE', 'ADV', 'ASSC', 'RSAV', 'I', 'YL', 'TSEE', 'P', 'FEG', 'VLGL', 'RLK', 'EGI', 'AI', 'TGC', 'W', 'PRW', 'P', 'DEM', 'DER', 'SAV', 'W', 'RVE', 'PY', 'TRH', 'FG', 'RVLY', 'SFGV', ',', '<0x0A>', 'The', '▁primary', '▁use', '▁of', '▁L', 'La', 'MA', '▁is', '▁research', '▁on', '▁large', '▁language', '▁models', ',', '▁including']\n"
     ]
    }
   ],
   "source": [
    "text='''GCTGACTCTGCCAGGATGGAATGAAATTAGGTTGTTTTAATTATAATGTAAAGTCAGTTCTAGTCAGACATAGTCACATAGGCAAGTAAGGGAACCTAAAATTGCTTGGAAT,\n",
    "KCGFVGPMVHLKVHLEADVASSCRSAVIYLTSEEPFEGVLGLRLKEGIAITGCWPRWPDEMDERSAVWRVEPYTRHFGRVLYSFGV,\n",
    "The primary use of LLaMA is research on large language models, including'''\n",
    "print(\"Test text:\\n\",text)\n",
    "print(f\"Tokenized by DNA-LLaMA tokenizer:{tokenizer.tokenize(text)}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "ebf869c8-866d-4770-8f64-79d671f88663",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "e497889a1c3c484cb57c4b6fd93b45ab",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Loading checkpoint shards:   0%|          | 0/3 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Some parameters are on the meta device because they were offloaded to the cpu.\n",
      "/root/miniconda3/lib/python3.12/site-packages/transformers/generation/utils.py:1220: UserWarning: Using the model-agnostic default `max_length` (=20) to control the generation length. We recommend setting `max_new_tokens` to control the maximum length of the generation.\n",
      "  warnings.warn(\n",
      "Starting from v4.46, the `logits` model output will have the same type as the model (except at train time, where it will always be FP32)\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "[{'generated_text': 'The key to life is to accept the fact that you are going to die. The key to'}]"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import torch\n",
    "from transformers import pipeline\n",
    "\n",
    "model_id = \"dnahlm-merge-hf\"\n",
    "\n",
    "pipe = pipeline(\n",
    "    \"text-generation\", \n",
    "    model=model_id, \n",
    "    #torch_dtype=torch.bfloat16, \n",
    "    device_map=\"auto\",\n",
    ")\n",
    "\n",
    "pipe(\"The key to life is\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "40a22c70-f1c4-4cd5-a118-2f5db40790e6",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[{'generated_text': 'GGAATGAAATTAGGTTGTTTTAATTATAATGTAAAGTCAGTTCTCTCCTCCTCCTCCTC'}]"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "pipe(\"GGAATGAAATTAGGTTGTTTTAATTATAATGTAAAGTCAGTTCT\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "aec95d0a-4269-4540-bf14-4ce157b9a194",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[{'generated_text': 'KCGFVGPMVHLKVHLEADVASSCRSAVIYLTSEEPFEGVLGLRLKETLK'}]"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "pipe(\"KCGFVGPMVHLKVHLEADVASSCRSAVIYLTSEEPFEGVLGLRLK\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c1cfab60-2820-4885-8961-0290c49dfbec",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}