File size: 27,117 Bytes
729bc74 a5e200c 729bc74 a5e200c 729bc74 a5e200c 729bc74 a5e200c 729bc74 a5e200c 729bc74 a5e200c 729bc74 a5e200c 729bc74 a5e200c 729bc74 a5e200c 729bc74 a5e200c 729bc74 a5e200c 729bc74 a5e200c 729bc74 a5e200c 729bc74 a5e200c 729bc74 a5e200c 729bc74 a5e200c 729bc74 a5e200c 729bc74 a5e200c 729bc74 a5e200c 729bc74 a5e200c 729bc74 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 |
{
"cells": [
{
"cell_type": "markdown",
"id": "1e6d4978-4f0f-4268-aa23-d864857bd6c8",
"metadata": {},
"source": [
"# 4.6 基于llama的基因大模型持续预训练"
]
},
{
"cell_type": "markdown",
"id": "2c201732-e736-463c-8446-637bf517479f",
"metadata": {},
"source": [
"LLaMA(**Large Language Model Meta AI**)是由 Meta(Facebook)开发的一系列大型语言模型,专注于提供高性能和高效的大语言模型,面向学术研究和开发社区。LLaMA 系列主要强调训练效率、模型性能和对计算资源的高效利用,是 GPT 系列模型的有力竞争者之一。\n",
"\n",
"---\n",
"\n",
"### **1. LLaMA 模型概述**\n",
"\n",
"#### **1.1 LLaMA 1**\n",
"- **发布**:2023 年 2 月。\n",
"- **模型参数规模**:\n",
" - 7B(70 亿)\n",
" - 13B(130 亿)\n",
" - 33B(330 亿)\n",
" - 65B(650 亿)\n",
"- **特点**:\n",
" - 专注于效率:与 GPT-3 等模型相比,LLaMA 在相同的训练成本下实现了更高的性能。\n",
" - 针对研究开放:提供预训练模型权重供研究使用。\n",
" - 使用高质量的数据:模型训练使用大量从网络中筛选的高质量文本数据,包括维基百科、书籍和其他高质量来源。\n",
"- **性能**:\n",
" - 在许多 NLP 任务中,LLaMA 的性能超过 GPT-3 和其他同类模型。\n",
" - 参数规模较小的版本(如 LLaMA-13B)性能可与 GPT-3(175B 参数)媲美。\n",
"\n",
"#### **1.2 LLaMA 2**\n",
"- **发布**:2023 年 7 月。\n",
"- **改进**:\n",
" - 增强的训练数据:相比 LLaMA 1,使用了更多的高质量数据。\n",
" - 引入微调版本:发布了开箱即用的对话模型(LLaMA 2-Chat)。\n",
" - 更好的开源支持:LLaMA 2 在商业用途上比 LLaMA 1 更加开放。\n",
"- **模型参数规模**:\n",
" - 7B(70 亿)\n",
" - 13B(130 亿)\n",
" - 70B(700 亿)\n",
"- **性能**:\n",
" - LLaMA 2 的性能相比 LLaMA 1 有显著提升。\n",
" - LLaMA 2-Chat 在对话任务中的表现优于许多现有开源模型。\n",
" - 在多个标准基准(如 MMLU)上超过 GPT-4 和 Claude 的开源实现。\n",
"\n",
"---\n",
"\n",
"### **2. LLaMA 的关键技术特点**\n",
"\n",
"#### **2.1 高效的架构设计**\n",
"- 基于 Transformer 架构。\n",
"- 针对训练效率和推理速度进行了优化,适合研究和开发。\n",
"\n",
"#### **2.2 模型压缩**\n",
"- 提供更小的参数规模(如 7B 和 13B),以便在更低的计算资源上运行。\n",
"- 在性能与参数量之间实现了很好的平衡。\n",
"\n",
"#### **2.3 训练数据**\n",
"- 使用从互联网中提取的高质量数据,注重数据清洗和筛选,避免低质量文本对模型的负面影响。\n",
"\n",
"#### **2.4 微调能力**\n",
"- 支持指令微调(Instruction Tuning)和 RLHF(基于人类反馈的强化学习),特别是在 LLaMA 2-Chat 模型中表现优异。\n",
"\n",
"---\n",
"\n",
"### **3. LLaMA 的性能对比**\n",
"\n",
"#### **与 GPT-3 比较**\n",
"- LLaMA 1-13B 参数模型在许多任务上的性能接近 GPT-3-175B。\n",
"- LLaMA 2-70B 在多个任务上超过 GPT-3。\n",
"\n",
"#### **与其他开源模型比较**\n",
"- LLaMA 2 在许多基准测试中优于其他开源模型(如 Falcon 和 MPT)。\n",
"- LLaMA 2-Chat 提供了与 ChatGPT 类似的对话能力,适用于对话任务。\n",
"\n",
"---\n",
"\n",
"### **4. 应用场景**\n",
"\n",
"1. **研究**:\n",
" - 开源权重适合学术研究,推动了对大语言模型的进一步探索。\n",
"\n",
"2. **对话系统**:\n",
" - LLaMA 2-Chat 专为对话任务设计,适合开发智能客服、聊天机器人等应用。\n",
"\n",
"3. **生成任务**:\n",
" - 支持文本生成、补全、摘要等任务。\n",
"\n",
"4. **微调与定制**:\n",
" - 可以基于特定领域数据进行微调,如医学、法律、教育等领域的专用模型。\n",
"\n",
"---\n",
"\n",
"### **5. 开源与获取方式**\n",
"\n",
"#### **1. 开源**\n",
"- LLaMA 1:需要申请权限才能获得模型权重。\n",
"- LLaMA 2:更加开放,允许商业用途,模型和权重可以通过 Meta 的合作平台获取(如 Hugging Face 和 AWS)。\n",
"\n",
"#### **2. 下载与使用**\n",
"使用 Hugging Face 加载模型:\n",
"```python\n",
"from transformers import AutoModelForCausalLM, AutoTokenizer\n",
"\n",
"model_name = \"meta-llama/Llama-2-7b-hf\" # 替换为具体模型\n",
"tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
"model = AutoModelForCausalLM.from_pretrained(model_name)\n",
"\n",
"# 使用模型生成文本\n",
"inputs = tokenizer(\"Hello, how are you?\", return_tensors=\"pt\")\n",
"outputs = model.generate(**inputs, max_length=50)\n",
"print(tokenizer.decode(outputs[0], skip_special_tokens=True))\n",
"```\n",
"\n",
"---\n",
"\n",
"### **6. 总结**\n",
"\n",
"#### **优势**\n",
"- **高性能**:在多个基准任务上表现出色。\n",
"- **高效训练**:小参数模型能与大模型媲美。\n",
"- **开放性**:LLaMA 2 提供了较为开放的商用许可。\n",
"\n",
"#### **局限**\n",
"- 模型需要高质量数据和强大算力训练,对推理设备也有一定要求。\n",
"\n",
"LLaMA 系列以其高效和开放的特点,为大模型研究和应用带来了强大动力,是当前大语言模型生态的重要组成部分。"
]
},
{
"cell_type": "markdown",
"id": "7fb0d648-f891-47b9-a644-af5263fa9718",
"metadata": {},
"source": [
"---\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "8b3c9ebb-213b-4dc4-a712-5a819fea3197",
"metadata": {},
"source": [
"**大模型的持续预训练**(Continual Pretraining of Large Models)是指在基础预训练模型(如 GPT、BERT 等)的基础上,通过引入新的数据或特定领域的数据继续进行预训练的过程。这一过程旨在让模型在特定场景或任务中表现更好,同时保留其通用能力。\n",
"\n",
"---\n",
"\n",
"### **1. 持续预训练的概念**\n",
"\n",
"持续预训练是一种在通用大模型的预训练基础上,进一步优化和适配模型的方法,主要包括以下两种场景:\n",
"1. **领域适配**:\n",
" - 将预训练模型在特定领域的数据上继续训练,使其对该领域的语料理解更深刻,例如法律、医学、金融等领域。\n",
"2. **性能优化**:\n",
" - 通过引入更多的通用数据或多样化的数据类型,扩展模型的通用能力,提高性能。\n",
"\n",
"---\n",
"\n",
"### **2. 持续预训练的目标**\n",
"\n",
"1. **提升领域性能**:\n",
" - 在特定领域任务上,模型能够更好地理解特定领域的语言模式和知识。\n",
" \n",
"2. **增强模型鲁棒性**:\n",
" - 通过引入新的数据或增强数据多样性,使模型对未见数据表现更稳定。\n",
"\n",
"3. **优化资源利用**:\n",
" - 通过复用已有的大模型权重,只需训练少量额外步骤,避免从零开始重新训练模型。\n",
"\n",
"---\n",
"\n",
"### **3. 持续预训练的步骤**\n",
"\n",
"#### **(1)数据准备**\n",
"- **领域数据**:针对特定领域(如医学、法律、科技)收集高质量语料。\n",
"- **新语料整合**:补充模型未见过的多样化语料。\n",
"- **数据清洗**:确保数据无噪声、语言风格一致。\n",
"\n",
"#### **(2)模型初始化**\n",
"- 使用现有的预训练模型作为初始权重,例如 Hugging Face 提供的 GPT-2 或 BERT 模型。\n",
"\n",
"#### **(3)训练设置**\n",
"- **超参数调整**:\n",
" - 通常使用较小的学习率(例如 `1e-5` 或 `2e-5`)以避免破坏已有的知识。\n",
"- **训练策略**:\n",
" - 冻结部分参数(如嵌入层或前几层)以保留通用能力,仅调整高层或新加入的部分。\n",
"\n",
"#### **(4)评估和验证**\n",
"- 使用领域任务的数据集对模型进行评估,验证其在目标任务中的改进效果。\n",
"\n",
"---\n",
"\n",
"### **4. 持续预训练的常见方法**\n",
"\n",
"#### **(1)全量持续预训练**\n",
"- 对整个模型的参数进行调整。\n",
"- **优点**:适合较大规模的新数据训练,能显著提升领域性能。\n",
"- **缺点**:计算资源需求大,可能导致模型过拟合。\n",
"\n",
"#### **(2)冻结部分参数**\n",
"- 冻结低层参数,仅微调高层。\n",
"- **优点**:保留通用知识,减少计算开销。\n",
"- **缺点**:对领域特定知识的适配可能不足。\n",
"\n",
"#### **(3)参数高效微调(PEFT)**\n",
"- 使用 PEFT 方法(如 LoRA、Adapter)进行预训练:\n",
" - **LoRA**:通过低秩矩阵分解,微调部分关键模块。\n",
" - **Adapter**:在 Transformer 层中插入小型适配模块。\n",
"- **优点**:显著减少需要更新的参数量。\n",
"\n",
"---\n",
"\n",
"### **5. 持续预训练的典型应用**\n",
"\n",
"1. **领域适配**\n",
" - **医学**:将预训练模型在 PubMed 或生物医学数据集上进行持续预训练。\n",
" - **法律**:使用法律文档进一步训练基础模型。\n",
" - **金融**:通过金融新闻、报告语料提升模型在金融领域的表现。\n",
"\n",
"2. **多语言扩展**\n",
" - 引入多语言语料,扩展模型的多语言能力。\n",
"\n",
"3. **数据更新**\n",
" - 持续加入新数据(如时事新闻)以适配最新语言模式。\n",
"\n",
"4. **特殊任务优化**\n",
" - 针对特定任务(如代码生成、对话)引入专用数据进行训练。\n",
"\n",
"---\n",
"\n",
"### **6. 实现持续预训练的代码示例**\n",
"\n",
"以下示例基于 Hugging Face 实现 GPT-2 的持续预训练:\n",
"\n",
"```python\n",
"from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments\n",
"from datasets import load_dataset\n",
"\n",
"# 1. 加载预训练模型和分词器\n",
"model_name = \"gpt2\"\n",
"tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
"model = AutoModelForCausalLM.from_pretrained(model_name)\n",
"\n",
"# 2. 加载新语料数据\n",
"dataset = load_dataset(\"text\", data_files={\"train\": \"domain_corpus.txt\"})\n",
"\n",
"# 3. 数据预处理\n",
"def tokenize_function(examples):\n",
" return tokenizer(examples[\"text\"], truncation=True, max_length=1024, padding=\"max_length\")\n",
"\n",
"tokenized_dataset = dataset.map(tokenize_function, batched=True)\n",
"\n",
"# 4. 设置训练参数\n",
"training_args = TrainingArguments(\n",
" output_dir=\"./gpt2_domain_adapted\",\n",
" overwrite_output_dir=True,\n",
" per_device_train_batch_size=4,\n",
" num_train_epochs=3,\n",
" learning_rate=5e-5,\n",
" save_steps=500,\n",
" save_total_limit=2,\n",
" logging_dir=\"./logs\",\n",
" evaluation_strategy=\"no\", # 评估策略可以根据需要调整\n",
" fp16=True, # 混合精度训练\n",
")\n",
"\n",
"# 5. 定义 Trainer 并启动训练\n",
"trainer = Trainer(\n",
" model=model,\n",
" args=training_args,\n",
" train_dataset=tokenized_dataset[\"train\"],\n",
" tokenizer=tokenizer,\n",
")\n",
"\n",
"trainer.train()\n",
"\n",
"# 6. 保存模型\n",
"model.save_pretrained(\"./gpt2_domain_adapted\")\n",
"tokenizer.save_pretrained(\"./gpt2_domain_adapted\")\n",
"```\n",
"\n",
"---\n",
"\n",
"### **7. 持续预训练的挑战**\n",
"\n",
"1. **灾难性遗忘**:\n",
" - 持续预训练可能导致模型丧失之前学到的知识。\n",
" - **解决方法**:使用少量原始数据进行联合训练。\n",
"\n",
"2. **计算资源需求**:\n",
" - 需要大量显存和算力,特别是对于大规模模型和数据。\n",
"\n",
"3. **数据质量和多样性**:\n",
" - 新引入的数据可能包含噪声,影响模型性能。\n",
"\n",
"---\n",
"\n",
"### **8. 持续预训练的优势**\n",
"\n",
"- 提高特定领域或任务的性能。\n",
"- 更高效地利用已有模型权重,避免从头训练。\n",
"- 保留原始模型的通用能力,同时增强领域适应性。\n",
"\n",
"---\n",
"\n",
"### **总结**\n",
"\n",
"持续预训练是适配领域任务和提升模型性能的重要方法,通过引入新数据或优化模型训练策略,可以让大模型在特定场景中表现更优。配合参数高效微调方法(如 LoRA),还可显著降低计算开销,提升训练效率。这种技术在学术研究、工业应用和前沿领域(如法律、医学等)中均具有广泛价值。"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ca41ad33-18fb-44da-8f79-0380b5c9dcaa",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"id": "3038550c-cc92-45c9-8bb4-46c58688bfc5",
"metadata": {},
"source": [
"## 本节任务\n",
"本节任务是基于llama。训练一个能够处理dna和protein蛋白质数据的基础预训练大模型,数据为第一章中的预训练数据,包括英文数据。"
]
},
{
"cell_type": "markdown",
"id": "aec90d65-ac62-4394-a526-ca62d8bdbad4",
"metadata": {},
"source": [
"## 环境设置\n",
"并行环境对transformer、peft等的版本要求比较高,如果版本不匹配可能会出现各种异常问题\n",
"之前的课程,都是单GPU运行,一般不存在版本问题,默认安装的都是最新版本。但运行并行环境时,需要确认下版本再运行,本课程运行并行环境如下:\n",
"\n",
"* Python 3.12.3\n",
"* transformers 4.45.2\n",
"* peft 0.3.0.dev0\n",
"* deepspeed 0.15.2\n",
"* accelerate 1.0.0\n",
"\n",
"如果不是,可以重新安装即可:\n",
"```\n",
"pip install transformers==4.45.2 deepspeed==0.15.2 accelerate==1.0.0\n",
"\n",
"#peft参考使用的是chinese llama的版本,需要git安装\n",
"\n",
"git clone https://github.com/huggingface/peft.git\n",
"\n",
"cd peft\n",
"\n",
"git checkout 13e53fc\n",
"\n",
"pip install . \n",
"```\n",
"如果有环境问题,可以查看本目录下的pip_list.txt"
]
},
{
"cell_type": "markdown",
"id": "b1bd33b8-2e05-4b59-9d8f-c48de194cfd6",
"metadata": {},
"source": [
"## 代码运行\n",
"\n",
"```\n",
"# 复制第一章训练数据,包括dna,protein,还有英文数据,添加英文数据是为了避免遗忘问题\n",
"\n",
"mkdir train_data\n",
"cp ../01-data_env/data/*.txt train_data/\n",
"使用这些数据,6卡4090大概大致需要训练16个小时,autodl也需要近200块钱了。\n",
"\n",
"建议学习时,可以使用1/10的数据训练:\n",
"awk ‘NR%10==1’ dna_1g.txt > dna.txt\n",
"rm dna_1g.txt\n",
"其他2类数据依次类推\n",
"\n",
"这样大概需要2到3个小时就能训练完成了\n",
"\n",
"\n",
"#持续预训练\n",
"./run_pt.sh\n",
"\n",
"#合并模型\n",
"./merge_pt_model.sh\n",
"\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "4960a36c-7529-4db8-b91d-df91245f79d9",
"metadata": {},
"source": [
"## 模型验证"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "69b3e97f-a801-4264-a651-a854bcfba9c6",
"metadata": {},
"outputs": [],
"source": [
"from transformers import AutoTokenizer, AutoConfig,AutoModel\n",
"from transformers import DataCollatorForLanguageModeling\n",
"from transformers import Trainer, TrainingArguments\n",
"from transformers import AutoConfig, AutoModelForCausalLM,LlamaForCausalLM,LlamaTokenizer\n",
"from tokenizers import Tokenizer\n",
"from datasets import load_dataset"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "339435d9-9379-4b30-ae8b-50feee1ba714",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"LlamaTokenizer(name_or_path='dnahlm-merge-hf', vocab_size=91643, model_max_length=1000000000000000019884624838656, is_fast=False, padding_side='right', truncation_side='right', special_tokens={'bos_token': '<s>', 'eos_token': '</s>', 'unk_token': '<unk>', 'pad_token': '</s>'}, clean_up_tokenization_spaces=False), added_tokens_decoder={\n",
"\t0: AddedToken(\"<unk>\", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),\n",
"\t1: AddedToken(\"<s>\", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),\n",
"\t2: AddedToken(\"</s>\", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),\n",
"}"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tokenizer = LlamaTokenizer.from_pretrained(\"dnahlm-merge-hf\")\n",
"tokenizer.pad_token = tokenizer.eos_token\n",
"tokenizer"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "d0f154bb-b1ab-4611-a14c-9b403043fd96",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "342e4ab139b64bb78f0429c2f92c8310",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Loading checkpoint shards: 0%| | 0/3 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"LlamaForCausalLM(\n",
" (model): LlamaModel(\n",
" (embed_tokens): Embedding(91643, 4096, padding_idx=0)\n",
" (layers): ModuleList(\n",
" (0-31): 32 x LlamaDecoderLayer(\n",
" (self_attn): LlamaSdpaAttention(\n",
" (q_proj): Linear(in_features=4096, out_features=4096, bias=False)\n",
" (k_proj): Linear(in_features=4096, out_features=4096, bias=False)\n",
" (v_proj): Linear(in_features=4096, out_features=4096, bias=False)\n",
" (o_proj): Linear(in_features=4096, out_features=4096, bias=False)\n",
" (rotary_emb): LlamaRotaryEmbedding()\n",
" )\n",
" (mlp): LlamaMLP(\n",
" (gate_proj): Linear(in_features=4096, out_features=11008, bias=False)\n",
" (up_proj): Linear(in_features=4096, out_features=11008, bias=False)\n",
" (down_proj): Linear(in_features=11008, out_features=4096, bias=False)\n",
" (act_fn): SiLU()\n",
" )\n",
" (input_layernorm): LlamaRMSNorm((4096,), eps=1e-06)\n",
" (post_attention_layernorm): LlamaRMSNorm((4096,), eps=1e-06)\n",
" )\n",
" )\n",
" (norm): LlamaRMSNorm((4096,), eps=1e-06)\n",
" (rotary_emb): LlamaRotaryEmbedding()\n",
" )\n",
" (lm_head): Linear(in_features=4096, out_features=91643, bias=False)\n",
")"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model = LlamaForCausalLM.from_pretrained(\"dnahlm-merge-hf\") #continue pretrain\n",
"model"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "792a9f78-1828-4695-9f6e-479a704ea7e8",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"LlamaConfig {\n",
" \"_name_or_path\": \"dnahlm-merge-hf\",\n",
" \"architectures\": [\n",
" \"LlamaForCausalLM\"\n",
" ],\n",
" \"attention_bias\": false,\n",
" \"attention_dropout\": 0.0,\n",
" \"bos_token_id\": 1,\n",
" \"eos_token_id\": 2,\n",
" \"head_dim\": 128,\n",
" \"hidden_act\": \"silu\",\n",
" \"hidden_size\": 4096,\n",
" \"initializer_range\": 0.02,\n",
" \"intermediate_size\": 11008,\n",
" \"max_position_embeddings\": 2048,\n",
" \"mlp_bias\": false,\n",
" \"model_type\": \"llama\",\n",
" \"num_attention_heads\": 32,\n",
" \"num_hidden_layers\": 32,\n",
" \"num_key_value_heads\": 32,\n",
" \"pad_token_id\": 0,\n",
" \"pretraining_tp\": 1,\n",
" \"rms_norm_eps\": 1e-06,\n",
" \"rope_scaling\": null,\n",
" \"rope_theta\": 10000.0,\n",
" \"tie_word_embeddings\": false,\n",
" \"torch_dtype\": \"float16\",\n",
" \"transformers_version\": \"4.45.2\",\n",
" \"use_cache\": true,\n",
" \"vocab_size\": 91643\n",
"}"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from transformers import AutoConfig\n",
"# 加载配置\n",
"config = AutoConfig.from_pretrained('dnahlm-merge-hf')\n",
"config"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "49021c65-54bb-4a97-a96d-b030cc3dcd13",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Test text:\n",
" GCTGACTCTGCCAGGATGGAATGAAATTAGGTTGTTTTAATTATAATGTAAAGTCAGTTCTAGTCAGACATAGTCACATAGGCAAGTAAGGGAACCTAAAATTGCTTGGAAT,\n",
"KCGFVGPMVHLKVHLEADVASSCRSAVIYLTSEEPFEGVLGLRLKEGIAITGCWPRWPDEMDERSAVWRVEPYTRHFGRVLYSFGV,\n",
"The primary use of LLaMA is research on large language models, including\n",
"Tokenized by DNA-LLaMA tokenizer:['▁GC', 'TGA', 'CT', 'C', 'TGCC', 'AGGATGG', 'AATG', 'AAATT', 'AGGTTG', 'TTTTAATT', 'ATAATGTAA', 'AGTCAG', 'TTCTAG', 'TCAG', 'ACATAG', 'TC', 'ACATAGG', 'CA', 'AGTAAGGG', 'AAC', 'CT', 'AAAATTGC', 'TTGG', 'AAT', ',', '<0x0A>', 'KCG', 'FVGP', 'MVHL', 'KV', 'HLE', 'ADV', 'ASSC', 'RSAV', 'I', 'YL', 'TSEE', 'P', 'FEG', 'VLGL', 'RLK', 'EGI', 'AI', 'TGC', 'W', 'PRW', 'P', 'DEM', 'DER', 'SAV', 'W', 'RVE', 'PY', 'TRH', 'FG', 'RVLY', 'SFGV', ',', '<0x0A>', 'The', '▁primary', '▁use', '▁of', '▁L', 'La', 'MA', '▁is', '▁research', '▁on', '▁large', '▁language', '▁models', ',', '▁including']\n"
]
}
],
"source": [
"text='''GCTGACTCTGCCAGGATGGAATGAAATTAGGTTGTTTTAATTATAATGTAAAGTCAGTTCTAGTCAGACATAGTCACATAGGCAAGTAAGGGAACCTAAAATTGCTTGGAAT,\n",
"KCGFVGPMVHLKVHLEADVASSCRSAVIYLTSEEPFEGVLGLRLKEGIAITGCWPRWPDEMDERSAVWRVEPYTRHFGRVLYSFGV,\n",
"The primary use of LLaMA is research on large language models, including'''\n",
"print(\"Test text:\\n\",text)\n",
"print(f\"Tokenized by DNA-LLaMA tokenizer:{tokenizer.tokenize(text)}\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "ebf869c8-866d-4770-8f64-79d671f88663",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e497889a1c3c484cb57c4b6fd93b45ab",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Loading checkpoint shards: 0%| | 0/3 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Some parameters are on the meta device because they were offloaded to the cpu.\n",
"/root/miniconda3/lib/python3.12/site-packages/transformers/generation/utils.py:1220: UserWarning: Using the model-agnostic default `max_length` (=20) to control the generation length. We recommend setting `max_new_tokens` to control the maximum length of the generation.\n",
" warnings.warn(\n",
"Starting from v4.46, the `logits` model output will have the same type as the model (except at train time, where it will always be FP32)\n"
]
},
{
"data": {
"text/plain": [
"[{'generated_text': 'The key to life is to accept the fact that you are going to die. The key to'}]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import torch\n",
"from transformers import pipeline\n",
"\n",
"model_id = \"dnahlm-merge-hf\"\n",
"\n",
"pipe = pipeline(\n",
" \"text-generation\", \n",
" model=model_id, \n",
" #torch_dtype=torch.bfloat16, \n",
" device_map=\"auto\",\n",
")\n",
"\n",
"pipe(\"The key to life is\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "40a22c70-f1c4-4cd5-a118-2f5db40790e6",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'generated_text': 'GGAATGAAATTAGGTTGTTTTAATTATAATGTAAAGTCAGTTCTCTCCTCCTCCTCCTC'}]"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pipe(\"GGAATGAAATTAGGTTGTTTTAATTATAATGTAAAGTCAGTTCT\")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "aec95d0a-4269-4540-bf14-4ce157b9a194",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'generated_text': 'KCGFVGPMVHLKVHLEADVASSCRSAVIYLTSEEPFEGVLGLRLKETLK'}]"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pipe(\"KCGFVGPMVHLKVHLEADVASSCRSAVIYLTSEEPFEGVLGLRLK\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c1cfab60-2820-4885-8961-0290c49dfbec",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|