File size: 38,561 Bytes
729bc74
 
 
 
 
 
 
 
 
 
a5e200c
 
 
 
 
 
 
 
729bc74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5e200c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
729bc74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5e200c
729bc74
 
 
 
a5e200c
 
 
 
 
 
 
 
729bc74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5e200c
 
729bc74
 
a5e200c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
729bc74
 
 
 
 
a5e200c
729bc74
 
a5e200c
729bc74
 
 
a5e200c
 
 
 
729bc74
 
 
 
 
 
 
 
 
 
 
 
 
a5e200c
 
 
 
729bc74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5e200c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
729bc74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5e200c
729bc74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5e200c
729bc74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "963e9ae0-ac68-44be-8c7d-fb9842784362",
   "metadata": {},
   "source": [
    "# 4.5 peft简介"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f4288594-c676-4369-aca1-730446f293d7",
   "metadata": {},
   "source": [
    "## peft"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "182b82c4-d484-4c15-a600-03c3b51367ec",
   "metadata": {},
   "source": [
    "**PEFT**(Parameter-Efficient Fine-Tuning,参数高效微调)是一种优化技术,旨在以最小的参数更新实现对大规模预训练模型(如 GPT、BERT 等)的微调。PEFT 技术通过减少微调所需的参数量,显著降低了存储和计算开销,同时保留模型的性能,特别适合资源受限的场景和领域特定任务的定制化。\n",
    "\n",
    "---\n",
    "\n",
    "### **1. 核心思想**\n",
    "传统的微调方式需要更新整个预训练模型的所有参数,PEFT 技术通过只调整少量的参数(如特定层或额外添加的小型模块)实现微调目标,大幅减少了训练开销和存储需求。\n",
    "\n",
    "---\n",
    "\n",
    "### **2. 常见的 PEFT 方法**\n",
    "\n",
    "#### **(1)Adapter 模型**\n",
    "- 在每一层 Transformer 的输出中插入小型适配器模块,仅训练适配器模块的参数。\n",
    "- 原始模型参数保持冻结不变。\n",
    "- 优点:适配器模块参数量小,能适应不同任务。\n",
    "\n",
    "示例方法:\n",
    "- **AdapterFusion**\n",
    "- **MAD-X**\n",
    "\n",
    "---\n",
    "\n",
    "#### **(2)Prefix Tuning**\n",
    "- 在 Transformer 的输入前添加一组可学习的前缀向量,这些前缀与模型的注意力机制交互。\n",
    "- 只调整前缀向量的参数,而不更新原始模型。\n",
    "- 优点:对生成任务效果显著,参数量进一步减少。\n",
    "\n",
    "---\n",
    "\n",
    "#### **(3)LoRA(Low-Rank Adaptation)**\n",
    "- 将预训练模型中的部分权重分解为两个低秩矩阵,仅调整这些低秩矩阵的参数。\n",
    "- 原始权重保持冻结状态。\n",
    "- 优点:参数量极小,计算高效。\n",
    "  \n",
    "---\n",
    "\n",
    "#### **(4)Prompt Tuning**\n",
    "- 在输入文本中添加可学习的提示(Prompt)。\n",
    "- 适合 NLP 任务中的文本生成、分类等。\n",
    "- 优点:实现简单,易于集成到现有框架。\n",
    "\n",
    "---\n",
    "\n",
    "### **3. PEFT 的优势**\n",
    "\n",
    "1. **显著减少参数更新量**:\n",
    "   - 微调传统的大模型(如 GPT-3)需要更新数百亿参数,而 PEFT 仅需更新百万级别甚至更少的参数。\n",
    "\n",
    "2. **高效存储**:\n",
    "   - 每个任务的微调结果只需存储少量额外参数,而不是整个模型。\n",
    "\n",
    "3. **适用多任务**:\n",
    "   - 同一预训练模型可以通过不同的 PEFT 模块适配多个任务,无需重新训练。\n",
    "\n",
    "4. **降低计算开销**:\n",
    "   - 训练所需的内存和计算显著减少,适合资源有限的环境。\n",
    "\n",
    "---\n",
    "\n",
    "### **4. 应用场景**\n",
    "\n",
    "1. **领域特定任务**:\n",
    "   - 医疗、法律、金融等领域微调预训练模型。\n",
    "\n",
    "2. **多任务学习**:\n",
    "   - 适配多个任务,复用同一模型的预训练权重。\n",
    "\n",
    "3. **资源受限场景**:\n",
    "   - 移动设备、边缘设备上的模型部署。\n",
    "\n",
    "---\n",
    "\n",
    "### **5. Hugging Face PEFT 库**\n",
    "\n",
    "Hugging Face 提供了专门的 PEFT 库,支持多种参数高效微调技术:\n",
    "- **安装**:\n",
    "  ```bash\n",
    "  pip install peft\n",
    "  ```\n",
    "- **使用 LoRA 微调示例**:\n",
    "  ```python\n",
    "  from transformers import AutoModelForCausalLM, AutoTokenizer\n",
    "  from peft import LoraConfig, get_peft_model, TaskType\n",
    "\n",
    "  # 加载模型和分词器\n",
    "  model_name = \"gpt2\"\n",
    "  model = AutoModelForCausalLM.from_pretrained(model_name)\n",
    "  tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
    "\n",
    "  # 配置 LoRA\n",
    "  lora_config = LoraConfig(\n",
    "      task_type=TaskType.CAUSAL_LM,\n",
    "      r=8,\n",
    "      lora_alpha=32,\n",
    "      target_modules=[\"q_proj\", \"v_proj\"],\n",
    "      lora_dropout=0.1,\n",
    "      bias=\"none\"\n",
    "  )\n",
    "\n",
    "  # 使用 LoRA 微调模型\n",
    "  model = get_peft_model(model, lora_config)\n",
    "  model.print_trainable_parameters()\n",
    "\n",
    "  # 微调代码...\n",
    "  ```\n",
    "\n",
    "---\n",
    "\n",
    "### **6. PEFT 的局限性**\n",
    "1. **特定任务限制**:\n",
    "   - 在一些复杂任务中,PEFT 方法可能不如全量微调效果好。\n",
    "\n",
    "2. **需要设计合适的模块**:\n",
    "   - 不同任务需要选择和设计合适的 PEFT 技术。\n",
    "\n",
    "3. **与模型架构相关**:\n",
    "   - PEFT 技术可能需要对模型架构进行一定程度的修改。\n",
    "\n",
    "---\n",
    "\n",
    "### **7. 小结**\n",
    "PEFT 是一个极具潜力的技术,特别适合在有限资源下对大模型进行微调。它在许多领域和任务中已显示出良好的效果,例如 LoRA 和 Adapter 模型已经成为高效微调的主流方法。\n",
    "\n",
    "如果您需要实现高效微调,可以结合 Hugging Face 的 PEFT 库快速上手。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a70b2631-c9b9-49da-96c6-6760c63040ac",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "id": "7b47ddf3-85c9-4dd8-bbbb-34fc3bd6aa1b",
   "metadata": {},
   "source": [
    "## GPT2使用peft样例"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "5aa3d240-44e1-4811-8f61-d6ff2500a798",
   "metadata": {},
   "outputs": [],
   "source": [
    "import subprocess\n",
    "import os\n",
    "# 设置环境变量, autodl一般区域\n",
    "result = subprocess.run('bash -c \"source /etc/network_turbo && env | grep proxy\"', shell=True, capture_output=True, text=True)\n",
    "output = result.stdout\n",
    "for line in output.splitlines():\n",
    "    if '=' in line:\n",
    "        var, value = line.split('=', 1)\n",
    "        os.environ[var] = value"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "17bdb69d-3f0f-465e-bd60-2047a088e264",
   "metadata": {},
   "source": [
    "如果您不确定模型中有哪些模块可以微调,可以打印模型结构:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "41a0c049-9134-4d89-aad0-1aa2241a9fca",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "4becc479adbc472bb7672d49da16aafd",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "generation_config.json:   0%|          | 0.00/124 [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "transformer\n",
      "transformer.wte\n",
      "transformer.wpe\n",
      "transformer.drop\n",
      "transformer.h\n",
      "transformer.h.0\n",
      "transformer.h.0.ln_1\n",
      "transformer.h.0.attn\n",
      "transformer.h.0.attn.c_attn\n",
      "transformer.h.0.attn.c_proj\n",
      "transformer.h.0.attn.attn_dropout\n",
      "transformer.h.0.attn.resid_dropout\n",
      "transformer.h.0.ln_2\n",
      "transformer.h.0.mlp\n",
      "transformer.h.0.mlp.c_fc\n",
      "transformer.h.0.mlp.c_proj\n",
      "transformer.h.0.mlp.act\n",
      "transformer.h.0.mlp.dropout\n",
      "transformer.h.1\n",
      "transformer.h.1.ln_1\n",
      "transformer.h.1.attn\n",
      "transformer.h.1.attn.c_attn\n",
      "transformer.h.1.attn.c_proj\n",
      "transformer.h.1.attn.attn_dropout\n",
      "transformer.h.1.attn.resid_dropout\n",
      "transformer.h.1.ln_2\n",
      "transformer.h.1.mlp\n",
      "transformer.h.1.mlp.c_fc\n",
      "transformer.h.1.mlp.c_proj\n",
      "transformer.h.1.mlp.act\n",
      "transformer.h.1.mlp.dropout\n",
      "transformer.h.2\n",
      "transformer.h.2.ln_1\n",
      "transformer.h.2.attn\n",
      "transformer.h.2.attn.c_attn\n",
      "transformer.h.2.attn.c_proj\n",
      "transformer.h.2.attn.attn_dropout\n",
      "transformer.h.2.attn.resid_dropout\n",
      "transformer.h.2.ln_2\n",
      "transformer.h.2.mlp\n",
      "transformer.h.2.mlp.c_fc\n",
      "transformer.h.2.mlp.c_proj\n",
      "transformer.h.2.mlp.act\n",
      "transformer.h.2.mlp.dropout\n",
      "transformer.h.3\n",
      "transformer.h.3.ln_1\n",
      "transformer.h.3.attn\n",
      "transformer.h.3.attn.c_attn\n",
      "transformer.h.3.attn.c_proj\n",
      "transformer.h.3.attn.attn_dropout\n",
      "transformer.h.3.attn.resid_dropout\n",
      "transformer.h.3.ln_2\n",
      "transformer.h.3.mlp\n",
      "transformer.h.3.mlp.c_fc\n",
      "transformer.h.3.mlp.c_proj\n",
      "transformer.h.3.mlp.act\n",
      "transformer.h.3.mlp.dropout\n",
      "transformer.h.4\n",
      "transformer.h.4.ln_1\n",
      "transformer.h.4.attn\n",
      "transformer.h.4.attn.c_attn\n",
      "transformer.h.4.attn.c_proj\n",
      "transformer.h.4.attn.attn_dropout\n",
      "transformer.h.4.attn.resid_dropout\n",
      "transformer.h.4.ln_2\n",
      "transformer.h.4.mlp\n",
      "transformer.h.4.mlp.c_fc\n",
      "transformer.h.4.mlp.c_proj\n",
      "transformer.h.4.mlp.act\n",
      "transformer.h.4.mlp.dropout\n",
      "transformer.h.5\n",
      "transformer.h.5.ln_1\n",
      "transformer.h.5.attn\n",
      "transformer.h.5.attn.c_attn\n",
      "transformer.h.5.attn.c_proj\n",
      "transformer.h.5.attn.attn_dropout\n",
      "transformer.h.5.attn.resid_dropout\n",
      "transformer.h.5.ln_2\n",
      "transformer.h.5.mlp\n",
      "transformer.h.5.mlp.c_fc\n",
      "transformer.h.5.mlp.c_proj\n",
      "transformer.h.5.mlp.act\n",
      "transformer.h.5.mlp.dropout\n",
      "transformer.h.6\n",
      "transformer.h.6.ln_1\n",
      "transformer.h.6.attn\n",
      "transformer.h.6.attn.c_attn\n",
      "transformer.h.6.attn.c_proj\n",
      "transformer.h.6.attn.attn_dropout\n",
      "transformer.h.6.attn.resid_dropout\n",
      "transformer.h.6.ln_2\n",
      "transformer.h.6.mlp\n",
      "transformer.h.6.mlp.c_fc\n",
      "transformer.h.6.mlp.c_proj\n",
      "transformer.h.6.mlp.act\n",
      "transformer.h.6.mlp.dropout\n",
      "transformer.h.7\n",
      "transformer.h.7.ln_1\n",
      "transformer.h.7.attn\n",
      "transformer.h.7.attn.c_attn\n",
      "transformer.h.7.attn.c_proj\n",
      "transformer.h.7.attn.attn_dropout\n",
      "transformer.h.7.attn.resid_dropout\n",
      "transformer.h.7.ln_2\n",
      "transformer.h.7.mlp\n",
      "transformer.h.7.mlp.c_fc\n",
      "transformer.h.7.mlp.c_proj\n",
      "transformer.h.7.mlp.act\n",
      "transformer.h.7.mlp.dropout\n",
      "transformer.h.8\n",
      "transformer.h.8.ln_1\n",
      "transformer.h.8.attn\n",
      "transformer.h.8.attn.c_attn\n",
      "transformer.h.8.attn.c_proj\n",
      "transformer.h.8.attn.attn_dropout\n",
      "transformer.h.8.attn.resid_dropout\n",
      "transformer.h.8.ln_2\n",
      "transformer.h.8.mlp\n",
      "transformer.h.8.mlp.c_fc\n",
      "transformer.h.8.mlp.c_proj\n",
      "transformer.h.8.mlp.act\n",
      "transformer.h.8.mlp.dropout\n",
      "transformer.h.9\n",
      "transformer.h.9.ln_1\n",
      "transformer.h.9.attn\n",
      "transformer.h.9.attn.c_attn\n",
      "transformer.h.9.attn.c_proj\n",
      "transformer.h.9.attn.attn_dropout\n",
      "transformer.h.9.attn.resid_dropout\n",
      "transformer.h.9.ln_2\n",
      "transformer.h.9.mlp\n",
      "transformer.h.9.mlp.c_fc\n",
      "transformer.h.9.mlp.c_proj\n",
      "transformer.h.9.mlp.act\n",
      "transformer.h.9.mlp.dropout\n",
      "transformer.h.10\n",
      "transformer.h.10.ln_1\n",
      "transformer.h.10.attn\n",
      "transformer.h.10.attn.c_attn\n",
      "transformer.h.10.attn.c_proj\n",
      "transformer.h.10.attn.attn_dropout\n",
      "transformer.h.10.attn.resid_dropout\n",
      "transformer.h.10.ln_2\n",
      "transformer.h.10.mlp\n",
      "transformer.h.10.mlp.c_fc\n",
      "transformer.h.10.mlp.c_proj\n",
      "transformer.h.10.mlp.act\n",
      "transformer.h.10.mlp.dropout\n",
      "transformer.h.11\n",
      "transformer.h.11.ln_1\n",
      "transformer.h.11.attn\n",
      "transformer.h.11.attn.c_attn\n",
      "transformer.h.11.attn.c_proj\n",
      "transformer.h.11.attn.attn_dropout\n",
      "transformer.h.11.attn.resid_dropout\n",
      "transformer.h.11.ln_2\n",
      "transformer.h.11.mlp\n",
      "transformer.h.11.mlp.c_fc\n",
      "transformer.h.11.mlp.c_proj\n",
      "transformer.h.11.mlp.act\n",
      "transformer.h.11.mlp.dropout\n",
      "transformer.ln_f\n",
      "lm_head\n"
     ]
    }
   ],
   "source": [
    "from transformers import AutoModelForCausalLM\n",
    "\n",
    "model = AutoModelForCausalLM.from_pretrained(\"gpt2\")\n",
    "\n",
    "# 打印所有模块名称\n",
    "for name, module in model.named_modules():\n",
    "    print(name)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0add2f79-f35c-4638-80bb-0d8a87a9b6a7",
   "metadata": {},
   "source": [
    "在选择 `target_modules` 时,通常会根据模块的名称选择模型的特定部分,通常使用列表中最后一个点 `.` 后的字段名或整个路径名(如果需要更精确)。以下是对这些模块的详细分析和选择建议:\n",
    "\n",
    "---\n",
    "\n",
    "### **1. 分析模块结构**\n",
    "\n",
    "从列表中可以看出,GPT-2 的模块层次分为以下几类:\n",
    "\n",
    "1. **Embedding 层**:\n",
    "   - `transformer.wte`:词嵌入层(Word Token Embeddings)。\n",
    "   - `transformer.wpe`:位置嵌入层(Position Embeddings)。\n",
    "\n",
    "2. **Transformer 编码器层**:\n",
    "   - 每层编号为 `transformer.h.<层号>`(共 12 层)。\n",
    "   - 每层中包含:\n",
    "     - **层归一化**:\n",
    "       - `transformer.h.<层号>.ln_1`:第一层归一化。\n",
    "       - `transformer.h.<层号>.ln_2`:第二层归一化。\n",
    "     - **自注意力模块**:\n",
    "       - `transformer.h.<层号>.attn.c_attn`:注意力模块的 Query、Key 和 Value 投影。\n",
    "       - `transformer.h.<层号>.attn.c_proj`:注意力的输出投影。\n",
    "       - `transformer.h.<层号>.attn.attn_dropout`:注意力的 Dropout。\n",
    "       - `transformer.h.<层号>.attn.resid_dropout`:残差的 Dropout。\n",
    "     - **前馈网络模块(MLP)**:\n",
    "       - `transformer.h.<层号>.mlp.c_fc`:MLP 的第一层全连接。\n",
    "       - `transformer.h.<层号>.mlp.c_proj`:MLP 的第二层全连接(输出投影)。\n",
    "       - `transformer.h.<层号>.mlp.act`:激活函数(如 GELU)。\n",
    "       - `transformer.h.<层号>.mlp.dropout`:MLP 的 Dropout。\n",
    "\n",
    "3. **最终层**:\n",
    "   - `transformer.ln_f`:最终层归一化(LayerNorm)。\n",
    "   - `lm_head`:语言建模头,用于生成预测的 token 分布。\n",
    "\n",
    "---\n",
    "\n",
    "### **2. 如何选择 `target_modules`**\n",
    "\n",
    "#### **(1)常见目标模块**\n",
    "- `transformer.h.<层号>.attn.c_attn`:对自注意力模块的 Query、Key 和 Value 投影层微调。\n",
    "- `transformer.h.<层号>.attn.c_proj`:对注意力输出的投影层微调。\n",
    "- `transformer.h.<层号>.mlp.c_fc`:对前馈网络的输入全连接层微调。\n",
    "- `transformer.h.<层号>.mlp.c_proj`:对前馈网络的输出投影层微调。\n",
    "\n",
    "#### **(2)推荐设置**\n",
    "- **文本生成任务**:\n",
    "  ```python\n",
    "  target_modules = [\"transformer.h.*.attn.c_attn\", \"transformer.h.*.attn.c_proj\"]\n",
    "  ```\n",
    "  解释:\n",
    "  - `*.attn.c_attn`:调整 Query、Key、Value 的生成。\n",
    "  - `*.attn.c_proj`:调整注意力输出。\n",
    "\n",
    "- **文本分类任务**:\n",
    "  ```python\n",
    "  target_modules = [\"transformer.h.*.attn.c_attn\"]\n",
    "  ```\n",
    "  解释:\n",
    "  - 微调自注意力模块最重要的部分即可。\n",
    "\n",
    "- **特定任务需要更细粒度控制**:\n",
    "  - 仅微调某几层:\n",
    "    ```python\n",
    "    target_modules = [\"transformer.h.0.attn.c_attn\", \"transformer.h.0.mlp.c_fc\"]\n",
    "    ```\n",
    "\n",
    "#### **(3)通配符选择**\n",
    "使用 `*` 通配符可以指定所有层的某些模块:\n",
    "- `transformer.h.*.attn.c_attn`:所有层的 Query、Key 和 Value 投影。\n",
    "- `transformer.h.*.mlp.*`:所有层的 MLP 模块。\n",
    "\n",
    "---\n",
    "\n",
    "### **3. 示例:指定多个模块**\n",
    "\n",
    "```python\n",
    "lora_config = LoraConfig(\n",
    "    task_type=TaskType.CAUSAL_LM,\n",
    "    r=8,\n",
    "    lora_alpha=32,\n",
    "    target_modules=[\n",
    "        \"transformer.h.*.attn.c_attn\",\n",
    "        \"transformer.h.*.mlp.c_fc\"\n",
    "    ],\n",
    "    lora_dropout=0.1,\n",
    "    bias=\"none\"\n",
    ")\n",
    "```\n",
    "\n",
    "- 这表示对所有层的 `attn.c_attn` 和 `mlp.c_fc` 模块进行 LoRA 微调。\n",
    "\n",
    "---\n",
    "\n",
    "### **4. 小提示:如何确定适合的模块**\n",
    "\n",
    "1. **任务相关性**:\n",
    "   - 文本生成:优先选择自注意力模块(如 `c_attn`)。\n",
    "   - 文本分类:通常需要全局语义表示,选择 `attn.c_attn` 或 `mlp.c_fc`。\n",
    "\n",
    "2. **性能与资源平衡**:\n",
    "   - 如果显存有限,可以只微调部分层。例如,仅选择浅层和深层的模块:\n",
    "     ```python\n",
    "     target_modules = [\"transformer.h.0.attn.c_attn\", \"transformer.h.11.attn.c_attn\"]\n",
    "     ```\n",
    "\n",
    "3. **打印模块名称以调试**:\n",
    "   - 确保选择的 `target_modules` 在模型中实际存在:\n",
    "     ```python\n",
    "     for name, _ in model.named_modules():\n",
    "         if \"c_attn\" in name:\n",
    "             print(name)\n",
    "     ```\n",
    "\n",
    "---\n",
    "\n",
    "### **建议**\n",
    "- 一般情况下,`c_attn` 和 `c_proj` 是首选模块。\n",
    "- 使用 `transformer.h.*` 通配符可以轻松指定多层。\n",
    "- 根据任务需求和资源限制灵活调整目标模块,以实现最佳性能和效率。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "14f20171-0719-4dfa-b888-147b657ebff4",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "id": "b4e7bff2-2a4f-4a1d-9cb1-dd02aead2f85",
   "metadata": {},
   "source": [
    "## LoraConfig具体配置"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "10c99eb9-8007-4297-972e-7be71768c9c3",
   "metadata": {},
   "source": [
    "以下是对 `LoraConfig` 配置的更详细解释,特别是如何设置微调哪些参数、冻结哪些参数,以及一般如何选择这些设置:\n",
    "\n",
    "---\n",
    "\n",
    "### **1. `LoraConfig` 参数解析**\n",
    "\n",
    "```python\n",
    "lora_config = LoraConfig(\n",
    "    task_type=TaskType.SEQ_CLS,  # 序列分类任务\n",
    "    r=8,                         # 降低矩阵秩\n",
    "    lora_alpha=32,               # LoRA 的 alpha 超参数\n",
    "    target_modules=[\"c_attn\"],   # GPT-2 中的自注意力模块\n",
    "    lora_dropout=0.1,            # dropout 概率\n",
    "    bias=\"none\",                 # 是否微调偏置参数\n",
    ")\n",
    "```\n",
    "\n",
    "#### **(1)`task_type`**\n",
    "- 定义任务类型,用于指导 PEFT 的具体行为。\n",
    "- **常见选项**:\n",
    "  - `TaskType.CAUSAL_LM`:自回归语言建模(如 GPT 系列模型)。\n",
    "  - `TaskType.SEQ_CLS`:序列分类(如情感分析)。\n",
    "  - `TaskType.TOKEN_CLS`:标注任务(如命名实体识别)。\n",
    "  - `TaskType.SEQ_2_SEQ_LM`:序列到序列任务(如翻译、摘要)。\n",
    "\n",
    "**当前设置**:\n",
    "- `TaskType.SEQ_CLS` 表示目标是文本分类任务。\n",
    "\n",
    "---\n",
    "\n",
    "#### **(2)`r`**\n",
    "- 表示 LoRA 的 **秩**(rank),是降低矩阵秩的核心参数。\n",
    "- LoRA 通过将模型的权重分解为两个低秩矩阵(`A` 和 `B`),只更新这两个矩阵。\n",
    "- `r` 的值越大,微调能力越强,但需要的额外参数也越多。\n",
    "- **典型范围**:`4` 至 `64`,大多数任务中 `8` 或 `16` 是常用值。\n",
    "\n",
    "**当前设置**:\n",
    "- `r=8` 表示使用低秩分解,并微调 8 维的参数矩阵。\n",
    "\n",
    "---\n",
    "\n",
    "#### **(3)`lora_alpha`**\n",
    "- 是 LoRA 的一个缩放因子,用于调节两个低秩矩阵的更新速率。\n",
    "- **公式**:实际更新 = LoRA 输出 × `lora_alpha / r`\n",
    "- **典型范围**:`16` 至 `128`,较大任务中可以选择更高的值。\n",
    "\n",
    "**当前设置**:\n",
    "- `lora_alpha=32`,表示适中幅度的更新速率。\n",
    "\n",
    "---\n",
    "\n",
    "#### **(4)`target_modules`**\n",
    "- 指定要应用 LoRA 微调的模块。\n",
    "- **常见选择**:\n",
    "  - 对 Transformer 模型中的 **注意力模块**(如 `query`、`key`、`value`)进行微调,因为这些模块对任务性能影响较大。\n",
    "  - 对 GPT-2,通常选择 `c_attn`(GPT-2 中负责自注意力机制的组合模块)。\n",
    "\n",
    "**当前设置**:\n",
    "- `target_modules=[\"c_attn\"]` 表示只对 GPT-2 的自注意力模块 `c_attn` 应用 LoRA。\n",
    "\n",
    "---\n",
    "\n",
    "#### **(5)`lora_dropout`**\n",
    "- 表示 LoRA 层的 dropout 概率,用于防止过拟合。\n",
    "- **典型范围**:`0.0` 至 `0.1`,视任务复杂性而定。\n",
    "\n",
    "**当前设置**:\n",
    "- `lora_dropout=0.1`,表示有 10% 的概率随机丢弃 LoRA 层的输出。\n",
    "\n",
    "---\n",
    "\n",
    "#### **(6)`bias`**\n",
    "- 决定是否微调偏置参数。\n",
    "- **选项**:\n",
    "  - `\"none\"`:不微调任何偏置。\n",
    "  - `\"all\"`:微调所有偏置。\n",
    "  - `\"lora_only\"`:只微调 LoRA 层的偏置。\n",
    "\n",
    "**当前设置**:\n",
    "- `bias=\"none\"`,表示所有偏置参数保持冻结。\n",
    "\n",
    "---\n",
    "\n",
    "### **5. 总结建议**\n",
    "- **微调的参数**:优先选择模型中注意力相关模块。\n",
    "- **冻结的参数**:大部分参数默认冻结以节省显存。\n",
    "- **配置选择**:根据任务复杂性调整 `r` 和 `target_modules`。\n",
    "- **推荐起点**:\n",
    "  - 文本分类:`target_modules=[\"c_attn\"]`, `r=8`, `lora_dropout=0.1`。\n",
    "  - 文本生成:`target_modules=[\"q_proj\", \"v_proj\"]`, `r=16`, `lora_dropout=0.1`。\n",
    "\n",
    "通过这些设置,LoRA 可以在参数量极小的情况下实现高效微调,适合各种任务场景。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "bbc080ba-3ee8-4bc6-afd9-2a3241f1bcda",
   "metadata": {},
   "outputs": [],
   "source": [
    "import subprocess\n",
    "import os\n",
    "# 设置环境变量, autodl一般区域\n",
    "result = subprocess.run('bash -c \"source /etc/network_turbo && env | grep proxy\"', shell=True, capture_output=True, text=True)\n",
    "output = result.stdout\n",
    "for line in output.splitlines():\n",
    "    if '=' in line:\n",
    "        var, value = line.split('=', 1)\n",
    "        os.environ[var] = value"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "26d9f362-18cc-471f-b208-f29a6933c06a",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Some weights of GPT2ForSequenceClassification were not initialized from the model checkpoint at dnagpt/dna_gpt2_v0 and are newly initialized: ['score.weight']\n",
      "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "f7e72521368341d38a2b11028715a871",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Map:   0%|          | 0/5920 [00:00<?, ? examples/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "trainable params: 296,448 || all params: 109,180,416 || trainable%: 0.2715\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/root/miniconda3/lib/python3.12/site-packages/peft/tuners/lora/layer.py:1264: UserWarning: fan_in_fan_out is set to False but the target module is `Conv1D`. Setting fan_in_fan_out to True.\n",
      "  warnings.warn(\n"
     ]
    }
   ],
   "source": [
    "from transformers import AutoModelForSequenceClassification, AutoTokenizer, TrainingArguments, Trainer\n",
    "from peft import LoraConfig, get_peft_model, TaskType\n",
    "from datasets import load_dataset\n",
    "from sklearn.metrics import accuracy_score, precision_recall_fscore_support\n",
    "from transformers import DataCollatorWithPadding\n",
    "\n",
    "# **1. 加载模型和分词器**\n",
    "model_name = \"dnagpt/dna_gpt2_v0\"  # 基础模型\n",
    "num_labels = 2       # 二分类任务\n",
    "model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=num_labels)\n",
    "tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
    "\n",
    "tokenizer.pad_token = tokenizer.eos_token\n",
    "model.config.pad_token_id = tokenizer.pad_token_id\n",
    "\n",
    "\n",
    "# **2. 定义数据集**\n",
    "# 示例数据集:dna_promoter_300\n",
    "dataset = load_dataset(\"dnagpt/dna_promoter_300\")['train'].train_test_split(test_size=0.1)\n",
    "\n",
    "# **3. 数据预处理**\n",
    "def preprocess_function(examples):\n",
    "    examples['label'] = [int(item) for item in examples['label']]\n",
    "    return tokenizer(\n",
    "        examples[\"sequence\"], truncation=True, padding=\"max_length\", max_length=128\n",
    "    )\n",
    "\n",
    "tokenized_datasets = dataset.map(preprocess_function, batched=True)\n",
    "#tokenized_datasets = tokenized_datasets.rename_column(\"label\", \"labels\")  # Hugging Face Trainer 要求标签列名为 'labels'\n",
    "\n",
    "# 4. 创建一个数据收集器,用于动态填充和遮蔽\n",
    "data_collator = DataCollatorWithPadding(tokenizer=tokenizer)\n",
    "\n",
    "# **4. 划分数据集**\n",
    "train_dataset = tokenized_datasets[\"train\"]\n",
    "test_dataset = tokenized_datasets[\"test\"]\n",
    "\n",
    "# **5. 配置 LoRA**\n",
    "lora_config = LoraConfig(\n",
    "    task_type=TaskType.SEQ_CLS,  # 序列分类任务\n",
    "    r=8,                         # 降低矩阵秩\n",
    "    lora_alpha=32,               # LoRA 的 alpha 超参数\n",
    "    target_modules=[\"c_attn\"],   # GPT-2 中的自注意力模块\n",
    "    lora_dropout=0.1,            # dropout 概率\n",
    "    bias=\"none\",                 # 是否微调偏置参数\n",
    ")\n",
    "\n",
    "# 使用 LoRA 包装模型\n",
    "model = get_peft_model(model, lora_config)\n",
    "model.print_trainable_parameters()  # 打印可训练的参数信息"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "7da39e7f-db92-483c-888d-19707ab35c5f",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/root/miniconda3/lib/python3.12/site-packages/transformers/training_args.py:1575: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n",
      "  warnings.warn(\n",
      "/tmp/ipykernel_2399/3695291394.py:28: FutureWarning: `tokenizer` is deprecated and will be removed in version 5.0.0 for `Trainer.__init__`. Use `processing_class` instead.\n",
      "  trainer = Trainer(\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "\n",
       "    <div>\n",
       "      \n",
       "      <progress value='66600' max='66600' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
       "      [66600/66600 34:07, Epoch 10/10]\n",
       "    </div>\n",
       "    <table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       " <tr style=\"text-align: left;\">\n",
       "      <th>Epoch</th>\n",
       "      <th>Training Loss</th>\n",
       "      <th>Validation Loss</th>\n",
       "      <th>Accuracy</th>\n",
       "      <th>Precision</th>\n",
       "      <th>Recall</th>\n",
       "      <th>F1</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <td>1</td>\n",
       "      <td>0.268300</td>\n",
       "      <td>0.307843</td>\n",
       "      <td>0.909797</td>\n",
       "      <td>0.916809</td>\n",
       "      <td>0.901987</td>\n",
       "      <td>0.909338</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>2</td>\n",
       "      <td>0.287400</td>\n",
       "      <td>0.278804</td>\n",
       "      <td>0.913514</td>\n",
       "      <td>0.901339</td>\n",
       "      <td>0.929269</td>\n",
       "      <td>0.915091</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>3</td>\n",
       "      <td>0.282800</td>\n",
       "      <td>0.291222</td>\n",
       "      <td>0.914527</td>\n",
       "      <td>0.913116</td>\n",
       "      <td>0.916807</td>\n",
       "      <td>0.914958</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>4</td>\n",
       "      <td>0.255200</td>\n",
       "      <td>0.281572</td>\n",
       "      <td>0.916385</td>\n",
       "      <td>0.896474</td>\n",
       "      <td>0.942068</td>\n",
       "      <td>0.918706</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>5</td>\n",
       "      <td>0.252000</td>\n",
       "      <td>0.271950</td>\n",
       "      <td>0.914527</td>\n",
       "      <td>0.913116</td>\n",
       "      <td>0.916807</td>\n",
       "      <td>0.914958</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>6</td>\n",
       "      <td>0.242300</td>\n",
       "      <td>0.288199</td>\n",
       "      <td>0.916385</td>\n",
       "      <td>0.916498</td>\n",
       "      <td>0.916807</td>\n",
       "      <td>0.916653</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>7</td>\n",
       "      <td>0.253500</td>\n",
       "      <td>0.268673</td>\n",
       "      <td>0.918750</td>\n",
       "      <td>0.909480</td>\n",
       "      <td>0.930616</td>\n",
       "      <td>0.919927</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>8</td>\n",
       "      <td>0.235900</td>\n",
       "      <td>0.277893</td>\n",
       "      <td>0.917568</td>\n",
       "      <td>0.906855</td>\n",
       "      <td>0.931290</td>\n",
       "      <td>0.918910</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>9</td>\n",
       "      <td>0.238600</td>\n",
       "      <td>0.280647</td>\n",
       "      <td>0.917568</td>\n",
       "      <td>0.913362</td>\n",
       "      <td>0.923206</td>\n",
       "      <td>0.918258</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>10</td>\n",
       "      <td>0.237900</td>\n",
       "      <td>0.284149</td>\n",
       "      <td>0.917736</td>\n",
       "      <td>0.913391</td>\n",
       "      <td>0.923543</td>\n",
       "      <td>0.918439</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table><p>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "训练完成,模型已保存至 ./gpt2_lora_text_classification\n"
     ]
    }
   ],
   "source": [
    "# **6. 计算指标**\n",
    "def compute_metrics(eval_pred):\n",
    "    predictions, labels = eval_pred\n",
    "    preds = predictions.argmax(axis=-1)\n",
    "    precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average=\"binary\")\n",
    "    acc = accuracy_score(labels, preds)\n",
    "    return {\"accuracy\": acc, \"precision\": precision, \"recall\": recall, \"f1\": f1}\n",
    "\n",
    "# **7. 定义训练参数**\n",
    "training_args = TrainingArguments(\n",
    "    output_dir=\"./gpt2_lora_text_classification\",  # 模型保存路径\n",
    "    evaluation_strategy=\"epoch\",                 # 每个 epoch 评估一次\n",
    "    save_strategy=\"epoch\",                       # 每个 epoch 保存一次\n",
    "    learning_rate=2e-5,                          # 学习率\n",
    "    per_device_train_batch_size=8,               # 每设备的批量大小\n",
    "    per_device_eval_batch_size=8,                # 每设备评估的批量大小\n",
    "    num_train_epochs=10,                          # 训练轮数\n",
    "    weight_decay=0.01,                           # 权重衰减\n",
    "    logging_dir=\"./logs\",                        # 日志路径\n",
    "    fp16=True,                                   # 启用混合精度训练\n",
    "    save_total_limit=2,                          # 保留最多两个检查点\n",
    "    load_best_model_at_end=True,                 # 加载最佳模型\n",
    "    metric_for_best_model=\"accuracy\",            # 根据准确率选择最佳模型\n",
    "    greater_is_better=True,\n",
    ")\n",
    "\n",
    "# **8. 定义 Trainer**\n",
    "trainer = Trainer(\n",
    "    model=model,\n",
    "    args=training_args,\n",
    "    train_dataset=train_dataset,\n",
    "    eval_dataset=test_dataset,\n",
    "    tokenizer=tokenizer,\n",
    "    data_collator=data_collator,\n",
    "    compute_metrics=compute_metrics,\n",
    ")\n",
    "\n",
    "# **9. 开始训练**\n",
    "trainer.train()\n",
    "\n",
    "# **10. 保存模型**\n",
    "model.save_pretrained(\"./gpt2_lora_text_classification\")\n",
    "tokenizer.save_pretrained(\"./gpt2_lora_text_classification\")\n",
    "\n",
    "print(\"训练完成,模型已保存至 ./gpt2_lora_text_classification\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "49a60fed-3a7d-4608-98b1-b4e313b94dbb",
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import AutoModelForSequenceClassification, AutoTokenizer\n",
    "from peft import PeftModel\n",
    "\n",
    "# 加载分词器\n",
    "model_path = \"./gpt2_lora_text_classification\"\n",
    "tokenizer = AutoTokenizer.from_pretrained(model_path)\n",
    "\n",
    "# 加载微调后的 PEFT 模型\n",
    "base_model = AutoModelForSequenceClassification.from_pretrained(\"gpt2\", num_labels=2)\n",
    "model = PeftModel.from_pretrained(base_model, model_path)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3c0d8f02-c3dc-4961-8b3a-50eefc5f9448",
   "metadata": {},
   "outputs": [],
   "source": [
    "import torch\n",
    "\n",
    "def predict(texts, model, tokenizer):\n",
    "    \"\"\"\n",
    "    使用微调后的 PEFT 模型进行推理。\n",
    "    \n",
    "    Args:\n",
    "        texts (list of str): 待分类的文本列表。\n",
    "        model (PeftModel): 微调后的模型。\n",
    "        tokenizer (AutoTokenizer): 分词器。\n",
    "    \n",
    "    Returns:\n",
    "        list of dict: 每个文本的预测结果,包括 logits 和预测的类别标签。\n",
    "    \"\"\"\n",
    "    # 对输入文本进行分词和编码\n",
    "    inputs = tokenizer(\n",
    "        texts,\n",
    "        padding=True,\n",
    "        truncation=True,\n",
    "        max_length=512,\n",
    "        return_tensors=\"pt\"\n",
    "    )\n",
    "    \n",
    "    # 将输入数据移动到模型的设备上(CPU/GPU)\n",
    "    inputs = {key: value.to(model.device) for key, value in inputs.items()}\n",
    "    \n",
    "    # 模型推理\n",
    "    model.eval()\n",
    "    with torch.no_grad():\n",
    "        outputs = model(**inputs)\n",
    "    \n",
    "    # 获取 logits 并计算预测类别\n",
    "    logits = outputs.logits\n",
    "    probs = torch.nn.functional.softmax(logits, dim=-1)\n",
    "    predictions = torch.argmax(probs, dim=-1)\n",
    "    \n",
    "    # 返回每个文本的预测结果\n",
    "    results = [\n",
    "        {\"text\": text, \"logits\": logit.tolist(), \"predicted_class\": int(pred)}\n",
    "        for text, logit, pred in zip(texts, logits, predictions)\n",
    "    ]\n",
    "    return results\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9c0cfe65-f4f3-4274-a4f4-1ac13725b15a",
   "metadata": {},
   "outputs": [],
   "source": [
    "Text: This movie was fantastic! I loved every part of it.\n",
    "Predicted Class: 1\n",
    "Logits: [-2.345, 3.567]\n",
    "\n",
    "Text: The plot was terrible and the acting was worse.\n",
    "Predicted Class: 0\n",
    "Logits: [4.123, -1.234]\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}