--- license: mit base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer datasets: - common_voice_7_0 metrics: - wer model-index: - name: w2v-bert-2.0-luganda-CV-train-validation-7.0 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_7_0 type: common_voice_7_0 config: lg split: test args: lg metrics: - name: Wer type: wer value: 0.1933150003273751 --- # w2v-bert-2.0-luganda-CV-train-validation-7.0 This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co./facebook/w2v-bert-2.0) on the Luganda mozilla common voices 7.0 dataset. We use the train and validation set for training and the test set for evaluation. When using this dataset, make sure that the audio has a sampling rate of 16kHz.It achieves the following results on the test set: - Loss: 0.2282 - Wer: 0.1933 ## Training and evaluation data The model was trained on version 7 of the Luganda dataset of Mozilla common voices dataset. We used the train and validation set for training and the test dataset for validation. The [training script](https://github.com/MusinguziDenis/Luganda-ASR/blob/main/wav2vec/notebook/Fine_Tune_W2V2_BERT_on_CV7_Luganda.ipynb) was adapted from this [transformers repo](https://huggingface.co./blog/fine-tune-w2v2-bert). ## Training procedure We trained the model on a 32 GB V100 GPU for 10 epochs using a learning rate of 5e-05. We used the AdamW optimizer. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1859 | 1.89 | 300 | 0.2854 | 0.2866 | | 0.1137 | 3.77 | 600 | 0.2503 | 0.2469 | | 0.0712 | 5.66 | 900 | 0.2043 | 0.2092 | | 0.0446 | 7.55 | 1200 | 0.2156 | 0.2005 | | 0.0269 | 9.43 | 1500 | 0.2282 | 0.1933 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.2.1+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2 ### Usage ```python import torch import torchaudio from datasets import load_dataset from transformers import AutoModelForCTC, Wav2Vec2BertProcessor test_dataset = load_dataset("common_voice", "lg", split="test[:10]") model = AutoModelForCTC.from_pretrained("dmusingu/w2v-bert-2.0-luganda-CV-train-validation-7.0") processor = Wav2Vec2BertProcessor.from_pretrained("dmusingu/w2v-bert-2.0-luganda-CV-train-validation-7.0") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ### Evaluation The model can be evaluated as follows on the Luganda test dataset. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import AutoModelForCTC, Wav2Vec2BertProcessor import re test_dataset = load_dataset("common_voice", "lg", split="test") wer = load_metric("wer") model = AutoModelForCTC.from_pretrained("dmusingu/w2v-bert-2.0-luganda-CV-train-validation-7.0").to('cuda') processor = Wav2Vec2BertProcessor.from_pretrained("dmusingu/w2v-bert-2.0-luganda-CV-train-validation-7.0") chars_to_remove_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\'\»\«]' test_dataset = test_dataset.cast_column("audio", Audio(sampling_rate=16_000)) def remove_special_characters(batch): # remove special characters batch["sentence"] = re.sub(chars_to_remove_regex, '', batch["sentence"]).lower() return batch test_dataset = test_dataset.map(remove_special_characters) def prepare_dataset(batch): audio = batch["audio"] batch["input_features"] = processor(audio["array"], sampling_rate=audio["sampling_rate"]).input_features[0] batch["input_length"] = len(batch["input_features"]) batch["labels"] = processor(text=batch["sentence"]).input_ids return batch test_dataset = test_dataset.map(prepare_dataset, remove_columns=test_dataset.column_names) # Evaluation is carried out with a batch size of 1 def map_to_result(batch): with torch.no_grad(): input_values = torch.tensor(batch["input_features"], device="cuda").unsqueeze(0) logits = model(input_values).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_str"] = processor.batch_decode(pred_ids)[0] batch["text"] = processor.decode(batch["labels"], group_tokens=False) return batch results = test_dataset.map(map_to_result) print("Test WER: {:.3f}".format(wer_metric.compute(predictions=results["pred_str"], references=results["text"]))) ``` ### Test Result: 19.33%