File size: 2,474 Bytes
daa4a08
0f82bf5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
daa4a08
 
0f82bf5
 
daa4a08
0f82bf5
daa4a08
0f82bf5
 
 
 
daa4a08
0f82bf5
daa4a08
0f82bf5
daa4a08
0f82bf5
daa4a08
0f82bf5
daa4a08
0f82bf5
daa4a08
0f82bf5
daa4a08
0f82bf5
daa4a08
0f82bf5
daa4a08
0f82bf5
 
 
 
 
 
 
 
 
 
daa4a08
0f82bf5
daa4a08
0f82bf5
 
 
 
 
 
 
 
 
 
 
 
 
 
daa4a08
 
0f82bf5
daa4a08
0f82bf5
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- generated_from_trainer
datasets:
- common_voice_7_0
metrics:
- wer
model-index:
- name: luganda_wav2vec2_ctc_train_clean
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: common_voice_7_0
      type: common_voice_7_0
      config: lg
      split: None
      args: lg
    metrics:
    - name: Wer
      type: wer
      value: 0.4156354350815164
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# luganda_wav2vec2_ctc_train_clean

This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co./facebook/wav2vec2-large-xlsr-53) on the common_voice_7_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2835
- Wer: 0.4156

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 5.8861        | 2.4   | 500  | 3.1284          | 1.0    |
| 2.0448        | 4.81  | 1000 | 0.5439          | 0.7131 |
| 0.6342        | 7.21  | 1500 | 0.3713          | 0.5556 |
| 0.4907        | 9.62  | 2000 | 0.3464          | 0.5015 |
| 0.4242        | 12.02 | 2500 | 0.3122          | 0.4746 |
| 0.3898        | 14.42 | 3000 | 0.3164          | 0.4634 |
| 0.357         | 16.83 | 3500 | 0.2896          | 0.4416 |
| 0.3338        | 19.23 | 4000 | 0.2880          | 0.4409 |
| 0.3223        | 21.63 | 4500 | 0.2841          | 0.4287 |
| 0.3072        | 24.04 | 5000 | 0.2849          | 0.4250 |
| 0.2974        | 26.44 | 5500 | 0.2829          | 0.4194 |
| 0.2878        | 28.85 | 6000 | 0.2835          | 0.4156 |


### Framework versions

- Transformers 4.38.1
- Pytorch 2.2.1+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2