--- language: - sw license: apache-2.0 base_model: openai/whisper-large tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_14_0 metrics: - wer model-index: - name: Whisper small - Denis Musinguzi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 14.0 type: mozilla-foundation/common_voice_14_0 config: lg split: None args: 'config: sw, split: test' metrics: - name: Wer type: wer value: 0.2992427862915644 --- # Whisper small - Denis Musinguzi This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co./openai/whisper-large) on the Common Voice 14.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3365 - Wer: 0.2992 - Cer: 0.0886 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Cer | Validation Loss | Wer | |:-------------:|:-----:|:----:|:------:|:---------------:|:------:| | 1.1439 | 0.3 | 800 | 0.1092 | 0.5335 | 0.4676 | | 0.3861 | 0.61 | 1600 | 0.1112 | 0.4259 | 0.4185 | | 0.3195 | 0.91 | 2400 | 0.0818 | 0.3794 | 0.3365 | | 0.2447 | 1.22 | 3200 | 0.0898 | 0.3637 | 0.3310 | | 0.2168 | 1.52 | 4000 | 0.0905 | 0.3473 | 0.3250 | | 0.2099 | 1.82 | 4800 | 0.0874 | 0.3354 | 0.3205 | | 0.1793 | 2.13 | 5600 | 0.0849 | 0.3376 | 0.3013 | | 0.1437 | 2.43 | 6400 | 0.0823 | 0.3356 | 0.2985 | | 0.14 | 2.74 | 7200 | 0.0833 | 0.3322 | 0.2953 | | 0.1351 | 3.04 | 8000 | 0.0873 | 0.3328 | 0.2979 | | 0.0994 | 3.34 | 8800 | 0.0699 | 0.3374 | 0.2838 | | 0.0986 | 3.65 | 9600 | 0.3365 | 0.2992 | 0.0886 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.2.1 - Datasets 2.17.0 - Tokenizers 0.15.2