--- language: - sw license: apache-2.0 base_model: openai/whisper-medium tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_14_0 metrics: - wer model-index: - name: Whisper Medium - Denis Musinguzi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 14.0 type: mozilla-foundation/common_voice_14_0 config: lg split: None args: 'config: sw, split: test' metrics: - name: Wer type: wer value: 0.2354584169666847 --- # Whisper Medium - Denis Musinguzi This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co./openai/whisper-medium) on the Common Voice 14.0 dataset. It achieves the following results on the evaluation set: - Cer: 0.0622 - Loss: 0.2969 - Wer: 0.2355 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Cer | Validation Loss | Wer | |:-------------:|:-----:|:----:|:------:|:---------------:|:------:| | 0.9513 | 0.3 | 800 | 0.0998 | 0.4428 | 0.4067 | | 0.313 | 0.61 | 1600 | 0.0913 | 0.3519 | 0.3427 | | 0.2593 | 0.91 | 2400 | 0.0628 | 0.3160 | 0.2689 | | 0.1887 | 1.22 | 3200 | 0.0633 | 0.3049 | 0.2574 | | 0.1642 | 1.52 | 4000 | 0.0752 | 0.2906 | 0.2655 | | 0.1595 | 1.82 | 4800 | 0.0737 | 0.2807 | 0.2617 | | 0.1288 | 2.13 | 5600 | 0.0643 | 0.2889 | 0.2416 | | 0.0928 | 2.43 | 6400 | 0.0629 | 0.2860 | 0.2387 | | 0.0887 | 2.74 | 7200 | 0.0572 | 0.2838 | 0.2309 | | 0.0836 | 3.04 | 8000 | 0.0575 | 0.2897 | 0.2338 | | 0.0466 | 3.34 | 8800 | 0.0572 | 0.2968 | 0.2322 | | 0.045 | 3.65 | 9600 | 0.0622 | 0.2969 | 0.2355 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.2.1 - Datasets 2.17.0 - Tokenizers 0.15.2