File size: 2,749 Bytes
85c12bc d599aa1 85c12bc d599aa1 85c12bc d599aa1 85c12bc d599aa1 85c12bc d599aa1 85c12bc d599aa1 85c12bc d599aa1 85c12bc d599aa1 85c12bc d599aa1 85c12bc d599aa1 85c12bc d599aa1 85c12bc d599aa1 85c12bc d599aa1 85c12bc d599aa1 85c12bc d599aa1 85c12bc d599aa1 85c12bc d599aa1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
language:
- sw
license: apache-2.0
base_model: openai/whisper-medium
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_14_0
metrics:
- wer
model-index:
- name: Whisper Medium - Denis Musinguzi
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 14.0
type: mozilla-foundation/common_voice_14_0
config: lg
split: None
args: 'config: sw, split: test'
metrics:
- name: Wer
type: wer
value: 0.2354584169666847
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Medium - Denis Musinguzi
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co./openai/whisper-medium) on the Common Voice 14.0 dataset.
It achieves the following results on the evaluation set:
- Cer: 0.0622
- Loss: 0.2969
- Wer: 0.2355
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 10000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Cer | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:------:|:---------------:|:------:|
| 0.9513 | 0.3 | 800 | 0.0998 | 0.4428 | 0.4067 |
| 0.313 | 0.61 | 1600 | 0.0913 | 0.3519 | 0.3427 |
| 0.2593 | 0.91 | 2400 | 0.0628 | 0.3160 | 0.2689 |
| 0.1887 | 1.22 | 3200 | 0.0633 | 0.3049 | 0.2574 |
| 0.1642 | 1.52 | 4000 | 0.0752 | 0.2906 | 0.2655 |
| 0.1595 | 1.82 | 4800 | 0.0737 | 0.2807 | 0.2617 |
| 0.1288 | 2.13 | 5600 | 0.0643 | 0.2889 | 0.2416 |
| 0.0928 | 2.43 | 6400 | 0.0629 | 0.2860 | 0.2387 |
| 0.0887 | 2.74 | 7200 | 0.0572 | 0.2838 | 0.2309 |
| 0.0836 | 3.04 | 8000 | 0.0575 | 0.2897 | 0.2338 |
| 0.0466 | 3.34 | 8800 | 0.0572 | 0.2968 | 0.2322 |
| 0.045 | 3.65 | 9600 | 0.0622 | 0.2969 | 0.2355 |
### Framework versions
- Transformers 4.38.1
- Pytorch 2.2.1
- Datasets 2.17.0
- Tokenizers 0.15.2
|