dmargutierrez commited on
Commit
6483870
·
1 Parent(s): abf2b21

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +98 -0
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - lextreme
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: roberta-base-mapa_fine-ner
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: lextreme
20
+ type: lextreme
21
+ config: mapa_fine
22
+ split: test
23
+ args: mapa_fine
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.7395134779750164
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.8236672524897481
31
+ - name: F1
32
+ type: f1
33
+ value: 0.7793251576248873
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.991740752278482
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # roberta-base-mapa_fine-ner
43
+
44
+ This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the lextreme dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.0401
47
+ - Precision: 0.7395
48
+ - Recall: 0.8237
49
+ - F1: 0.7793
50
+ - Accuracy: 0.9917
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 2e-05
70
+ - train_batch_size: 16
71
+ - eval_batch_size: 16
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - num_epochs: 10
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | 0.0877 | 1.0 | 1739 | 0.0495 | 0.6861 | 0.7595 | 0.7209 | 0.9903 |
82
+ | 0.0661 | 2.0 | 3478 | 0.0432 | 0.7278 | 0.8092 | 0.7663 | 0.9914 |
83
+ | 0.0633 | 3.0 | 5217 | 0.0403 | 0.7469 | 0.8128 | 0.7785 | 0.9919 |
84
+ | 0.059 | 4.0 | 6956 | 0.0401 | 0.7412 | 0.8196 | 0.7784 | 0.9918 |
85
+ | 0.063 | 5.0 | 8695 | 0.0400 | 0.7425 | 0.8200 | 0.7793 | 0.9918 |
86
+ | 0.0593 | 6.0 | 10434 | 0.0405 | 0.7332 | 0.8244 | 0.7761 | 0.9916 |
87
+ | 0.0595 | 7.0 | 12173 | 0.0400 | 0.7389 | 0.8222 | 0.7783 | 0.9917 |
88
+ | 0.0593 | 8.0 | 13912 | 0.0401 | 0.7390 | 0.8229 | 0.7787 | 0.9917 |
89
+ | 0.0594 | 9.0 | 15651 | 0.0402 | 0.7374 | 0.8240 | 0.7783 | 0.9917 |
90
+ | 0.0597 | 10.0 | 17390 | 0.0401 | 0.7395 | 0.8237 | 0.7793 | 0.9917 |
91
+
92
+
93
+ ### Framework versions
94
+
95
+ - Transformers 4.26.0
96
+ - Pytorch 1.13.1+cu117
97
+ - Datasets 2.9.0
98
+ - Tokenizers 0.13.2