--- license: apache-2.0 tags: - named_entity_recognition - food_recipes_ner datasets: - dmargutierrez/TASTESet metrics: - precision - recall - f1 - accuracy base_model: distilbert-base-uncased model-index: - name: distilbert-base-uncased-TASTESet-ner results: [] --- # distilbert-base-uncased-TASTESet-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on the [TASTESet](https://huggingface.co./datasets/dmargutierrez/TASTESet) dataset. It achieves the following results on the evaluation set: - Loss: 0.3816 - Precision: 0.8929 - Recall: 0.9229 - F1: 0.9076 - Accuracy: 0.9130 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 31 | 1.0797 | 0.6027 | 0.6903 | 0.6435 | 0.7063 | | No log | 2.0 | 62 | 0.6402 | 0.7681 | 0.8295 | 0.7976 | 0.8304 | | No log | 3.0 | 93 | 0.4899 | 0.8379 | 0.8789 | 0.8579 | 0.8728 | | No log | 4.0 | 124 | 0.4232 | 0.8716 | 0.8994 | 0.8853 | 0.8912 | | No log | 5.0 | 155 | 0.3883 | 0.8798 | 0.9043 | 0.8919 | 0.8992 | | No log | 6.0 | 186 | 0.3848 | 0.8769 | 0.9103 | 0.8933 | 0.9004 | | No log | 7.0 | 217 | 0.3684 | 0.8864 | 0.9123 | 0.8991 | 0.9046 | | No log | 8.0 | 248 | 0.3650 | 0.8930 | 0.9182 | 0.9054 | 0.9087 | | No log | 9.0 | 279 | 0.3628 | 0.8908 | 0.9197 | 0.9050 | 0.9096 | | No log | 10.0 | 310 | 0.3674 | 0.8933 | 0.9165 | 0.9047 | 0.9093 | | No log | 11.0 | 341 | 0.3668 | 0.8958 | 0.9177 | 0.9066 | 0.9120 | | No log | 12.0 | 372 | 0.3717 | 0.8904 | 0.9234 | 0.9066 | 0.9120 | | No log | 13.0 | 403 | 0.3693 | 0.8940 | 0.9197 | 0.9067 | 0.9126 | | No log | 14.0 | 434 | 0.3805 | 0.8913 | 0.9239 | 0.9073 | 0.9135 | | No log | 15.0 | 465 | 0.3788 | 0.8954 | 0.9202 | 0.9076 | 0.9123 | | No log | 16.0 | 496 | 0.3803 | 0.8935 | 0.9231 | 0.9081 | 0.9122 | | 0.3275 | 17.0 | 527 | 0.3814 | 0.8918 | 0.9229 | 0.9071 | 0.9126 | | 0.3275 | 18.0 | 558 | 0.3823 | 0.8921 | 0.9241 | 0.9079 | 0.9123 | | 0.3275 | 19.0 | 589 | 0.3827 | 0.8928 | 0.9224 | 0.9074 | 0.9124 | | 0.3275 | 20.0 | 620 | 0.3816 | 0.8929 | 0.9229 | 0.9076 | 0.9130 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu117 - Datasets 2.9.0 - Tokenizers 0.13.2