dmargutierrez commited on
Commit
d2fbfcd
·
1 Parent(s): 857a690

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -0
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: distilbert-base-uncased-TASTESet-ner
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # distilbert-base-uncased-TASTESet-ner
19
+
20
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.3816
23
+ - Precision: 0.8929
24
+ - Recall: 0.9229
25
+ - F1: 0.9076
26
+ - Accuracy: 0.9130
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 16
47
+ - eval_batch_size: 16
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 20
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | No log | 1.0 | 31 | 1.0797 | 0.6027 | 0.6903 | 0.6435 | 0.7063 |
58
+ | No log | 2.0 | 62 | 0.6402 | 0.7681 | 0.8295 | 0.7976 | 0.8304 |
59
+ | No log | 3.0 | 93 | 0.4899 | 0.8379 | 0.8789 | 0.8579 | 0.8728 |
60
+ | No log | 4.0 | 124 | 0.4232 | 0.8716 | 0.8994 | 0.8853 | 0.8912 |
61
+ | No log | 5.0 | 155 | 0.3883 | 0.8798 | 0.9043 | 0.8919 | 0.8992 |
62
+ | No log | 6.0 | 186 | 0.3848 | 0.8769 | 0.9103 | 0.8933 | 0.9004 |
63
+ | No log | 7.0 | 217 | 0.3684 | 0.8864 | 0.9123 | 0.8991 | 0.9046 |
64
+ | No log | 8.0 | 248 | 0.3650 | 0.8930 | 0.9182 | 0.9054 | 0.9087 |
65
+ | No log | 9.0 | 279 | 0.3628 | 0.8908 | 0.9197 | 0.9050 | 0.9096 |
66
+ | No log | 10.0 | 310 | 0.3674 | 0.8933 | 0.9165 | 0.9047 | 0.9093 |
67
+ | No log | 11.0 | 341 | 0.3668 | 0.8958 | 0.9177 | 0.9066 | 0.9120 |
68
+ | No log | 12.0 | 372 | 0.3717 | 0.8904 | 0.9234 | 0.9066 | 0.9120 |
69
+ | No log | 13.0 | 403 | 0.3693 | 0.8940 | 0.9197 | 0.9067 | 0.9126 |
70
+ | No log | 14.0 | 434 | 0.3805 | 0.8913 | 0.9239 | 0.9073 | 0.9135 |
71
+ | No log | 15.0 | 465 | 0.3788 | 0.8954 | 0.9202 | 0.9076 | 0.9123 |
72
+ | No log | 16.0 | 496 | 0.3803 | 0.8935 | 0.9231 | 0.9081 | 0.9122 |
73
+ | 0.3275 | 17.0 | 527 | 0.3814 | 0.8918 | 0.9229 | 0.9071 | 0.9126 |
74
+ | 0.3275 | 18.0 | 558 | 0.3823 | 0.8921 | 0.9241 | 0.9079 | 0.9123 |
75
+ | 0.3275 | 19.0 | 589 | 0.3827 | 0.8928 | 0.9224 | 0.9074 | 0.9124 |
76
+ | 0.3275 | 20.0 | 620 | 0.3816 | 0.8929 | 0.9229 | 0.9076 | 0.9130 |
77
+
78
+
79
+ ### Framework versions
80
+
81
+ - Transformers 4.26.0
82
+ - Pytorch 1.13.1+cu117
83
+ - Datasets 2.9.0
84
+ - Tokenizers 0.13.2