--- library_name: transformers license: apache-2.0 base_model: facebook/hubert-base-ls960 tags: - generated_from_trainer datasets: - UrbanSounds/UrbanSoundsNew metrics: - accuracy model-index: - name: hubert-base-ls960-finetuned-urbansound results: - task: name: Audio Classification type: audio-classification dataset: name: urbansound type: UrbanSounds/UrbanSoundsNew config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.6086956521739131 --- # hubert-base-ls960-finetuned-urbansound This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co./facebook/hubert-base-ls960) on the urbansound dataset. It achieves the following results on the evaluation set: - Loss: 1.1907 - Accuracy: 0.6087 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.133 | 1.0 | 50 | 2.1532 | 0.2609 | | 2.0878 | 2.0 | 100 | 2.0094 | 0.3478 | | 1.8873 | 3.0 | 150 | 1.8741 | 0.2609 | | 1.6437 | 4.0 | 200 | 1.5861 | 0.4783 | | 1.5457 | 5.0 | 250 | 1.4944 | 0.4783 | | 1.181 | 6.0 | 300 | 1.4003 | 0.5217 | | 1.2324 | 7.0 | 350 | 1.2538 | 0.5217 | | 0.9965 | 8.0 | 400 | 1.1745 | 0.5217 | | 1.26 | 9.0 | 450 | 1.1725 | 0.6087 | | 1.0922 | 10.0 | 500 | 1.1907 | 0.6087 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0