First commit
Browse files- README.md +124 -0
- oriented_rcnn_r50_fpn_1x_dota_le90-6d2b2ce0.pth +3 -0
- oriented_rcnn_r50_fpn_1x_dota_le90.py +249 -0
README.md
CHANGED
@@ -1,3 +1,127 @@
|
|
1 |
---
|
2 |
license: cc-by-nc-sa-4.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: cc-by-nc-sa-4.0
|
3 |
---
|
4 |
+
|
5 |
+
---
|
6 |
+
|
7 |
+
---
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
# Model Card for Oriented R-CNN pretrained on DOTA 1.0
|
15 |
+
|
16 |
+
<!-- Provide a quick summary of what the model is/does. [Optional] -->
|
17 |
+
The original paper is [Oriented R-CNN for Object Detection](https://openaccess.thecvf.com/content/ICCV2021/papers/Xie_Oriented_R-CNN_for_Object_Detection_ICCV_2021_paper.pdf).
|
18 |
+
|
19 |
+
This implementation of this model has been developed by [OpenMMLab](https://openmmlab.com/) in the [MMRotate](https://github.com/open-mmlab/mmrotate) framework.
|
20 |
+
|
21 |
+
The model has been trained on [DOTA 1.0](https://captain-whu.github.io/DOTA/)
|
22 |
+
|
23 |
+
The performance measured as mAP is 75.69.
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
# Table of Contents
|
29 |
+
|
30 |
+
- [Model Card for Oriented R-CNN pretrained on DOTA 1.0](#model-card-for--model_id-)
|
31 |
+
- [Table of Contents](#table-of-contents)
|
32 |
+
- [Model Details](#model-details)
|
33 |
+
- [Model Description](#model-description)
|
34 |
+
- [Uses](#uses)
|
35 |
+
- [Direct Use](#direct-use)
|
36 |
+
- [Out-of-Scope Use](#out-of-scope-use)
|
37 |
+
- [Bias, Risks, and Limitations](#bias-risks-and-limitations)
|
38 |
+
- [Recommendations](#recommendations)
|
39 |
+
- [Training Details](#training-details)
|
40 |
+
- [Training Data](#training-data)
|
41 |
+
- [Metrics](#metrics)
|
42 |
+
- [Results](#results)
|
43 |
+
- [Model Card Contact](#model-card-contact)
|
44 |
+
- [How to Get Started with the Model](#how-to-get-started-with-the-model)
|
45 |
+
|
46 |
+
|
47 |
+
# Model Details
|
48 |
+
|
49 |
+
## Model Description
|
50 |
+
|
51 |
+
<!-- Provide a longer summary of what this model is/does. -->
|
52 |
+
The original paper is [Oriented R-CNN for Object Detection](https://openaccess.thecvf.com/content/ICCV2021/papers/Xie_Oriented_R-CNN_for_Object_Detection_ICCV_2021_paper.pdf).
|
53 |
+
|
54 |
+
This implementation of this model has been developed by [OpenMMLab](https://openmmlab.com/) in the [MMRotate](https://github.com/open-mmlab/mmrotate) framework.
|
55 |
+
|
56 |
+
The model has been trained on [DOTA 1.0](https://captain-whu.github.io/DOTA/)
|
57 |
+
|
58 |
+
The performance measured as mAP is 75.69.
|
59 |
+
|
60 |
+
- **Developed by:** OpenMMLab
|
61 |
+
- **Model type:** Object Detection model
|
62 |
+
- **License:** cc-by-nc-sa-4.0
|
63 |
+
- **Resources for more information:** More information needed
|
64 |
+
- [GitHub Repo](https://github.com/open-mmlab/mmrotate/)
|
65 |
+
- [Associated Paper](https://openaccess.thecvf.com/content/ICCV2021/papers/Xie_Oriented_R-CNN_for_Object_Detection_ICCV_2021_paper.pdf)
|
66 |
+
|
67 |
+
# Uses
|
68 |
+
|
69 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
70 |
+
|
71 |
+
## Direct Use
|
72 |
+
|
73 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
74 |
+
<!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." -->
|
75 |
+
|
76 |
+
|
77 |
+
## Out-of-Scope Use
|
78 |
+
|
79 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
80 |
+
<!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." -->
|
81 |
+
|
82 |
+
|
83 |
+
# Bias, Risks, and Limitations
|
84 |
+
|
85 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
86 |
+
|
87 |
+
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
|
88 |
+
|
89 |
+
|
90 |
+
# Training Details
|
91 |
+
|
92 |
+
## Training Data
|
93 |
+
|
94 |
+
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
95 |
+
|
96 |
+
The model has been trained on [DOTA 1.0](https://captain-whu.github.io/DOTA/)
|
97 |
+
|
98 |
+
|
99 |
+
## Metrics
|
100 |
+
|
101 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
102 |
+
|
103 |
+
The performance is measured as mAP.
|
104 |
+
|
105 |
+
## Results
|
106 |
+
|
107 |
+
The final mAP is 75.69.
|
108 |
+
|
109 |
+
|
110 |
+
# Model Card Contact
|
111 |
+
|
112 |
+
Jeff Faudi
|
113 |
+
|
114 |
+
# How to Get Started with the Model
|
115 |
+
|
116 |
+
Use the code below to get started with the model.
|
117 |
+
|
118 |
+
```
|
119 |
+
from mmdet.apis import init_detector, inference_detector
|
120 |
+
import mmrotate
|
121 |
+
|
122 |
+
config_file = 'oriented_rcnn_r50_fpn_1x_dota_le90.py'
|
123 |
+
checkpoint_file = 'oriented_rcnn_r50_fpn_1x_dota_le90-6d2b2ce0.pth'
|
124 |
+
model = init_detector(config_file, checkpoint_file, device='cuda:0')
|
125 |
+
inference_detector(model, 'demo/demo.jpg')
|
126 |
+
```
|
127 |
+
|
oriented_rcnn_r50_fpn_1x_dota_le90-6d2b2ce0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6d2b2ce0de1becdcb48c26dbcfdbf69d929f0d934a07335dd1065e6e8e24d3af
|
3 |
+
size 165749436
|
oriented_rcnn_r50_fpn_1x_dota_le90.py
ADDED
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dataset_type = 'DOTADataset'
|
2 |
+
data_root = 'data/split_1024_dota1_0/'
|
3 |
+
img_norm_cfg = dict(
|
4 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
5 |
+
train_pipeline = [
|
6 |
+
dict(type='LoadImageFromFile'),
|
7 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
8 |
+
dict(type='RResize', img_scale=(1024, 1024)),
|
9 |
+
dict(
|
10 |
+
type='RRandomFlip',
|
11 |
+
flip_ratio=[0.25, 0.25, 0.25],
|
12 |
+
direction=['horizontal', 'vertical', 'diagonal'],
|
13 |
+
version='le90'),
|
14 |
+
dict(
|
15 |
+
type='Normalize',
|
16 |
+
mean=[123.675, 116.28, 103.53],
|
17 |
+
std=[58.395, 57.12, 57.375],
|
18 |
+
to_rgb=True),
|
19 |
+
dict(type='Pad', size_divisor=32),
|
20 |
+
dict(type='DefaultFormatBundle'),
|
21 |
+
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
|
22 |
+
]
|
23 |
+
test_pipeline = [
|
24 |
+
dict(type='LoadImageFromFile'),
|
25 |
+
dict(
|
26 |
+
type='MultiScaleFlipAug',
|
27 |
+
img_scale=(1024, 1024),
|
28 |
+
flip=False,
|
29 |
+
transforms=[
|
30 |
+
dict(type='RResize'),
|
31 |
+
dict(
|
32 |
+
type='Normalize',
|
33 |
+
mean=[123.675, 116.28, 103.53],
|
34 |
+
std=[58.395, 57.12, 57.375],
|
35 |
+
to_rgb=True),
|
36 |
+
dict(type='Pad', size_divisor=32),
|
37 |
+
dict(type='DefaultFormatBundle'),
|
38 |
+
dict(type='Collect', keys=['img'])
|
39 |
+
])
|
40 |
+
]
|
41 |
+
data = dict(
|
42 |
+
samples_per_gpu=2,
|
43 |
+
workers_per_gpu=2,
|
44 |
+
train=dict(
|
45 |
+
type='DOTADataset',
|
46 |
+
ann_file='data/split_1024_dota1_0/trainval/annfiles/',
|
47 |
+
img_prefix='data/split_1024_dota1_0/trainval/images/',
|
48 |
+
pipeline=[
|
49 |
+
dict(type='LoadImageFromFile'),
|
50 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
51 |
+
dict(type='RResize', img_scale=(1024, 1024)),
|
52 |
+
dict(
|
53 |
+
type='RRandomFlip',
|
54 |
+
flip_ratio=[0.25, 0.25, 0.25],
|
55 |
+
direction=['horizontal', 'vertical', 'diagonal'],
|
56 |
+
version='le90'),
|
57 |
+
dict(
|
58 |
+
type='Normalize',
|
59 |
+
mean=[123.675, 116.28, 103.53],
|
60 |
+
std=[58.395, 57.12, 57.375],
|
61 |
+
to_rgb=True),
|
62 |
+
dict(type='Pad', size_divisor=32),
|
63 |
+
dict(type='DefaultFormatBundle'),
|
64 |
+
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
|
65 |
+
],
|
66 |
+
version='le90'),
|
67 |
+
val=dict(
|
68 |
+
type='DOTADataset',
|
69 |
+
ann_file='data/split_1024_dota1_0/trainval/annfiles/',
|
70 |
+
img_prefix='data/split_1024_dota1_0/trainval/images/',
|
71 |
+
pipeline=[
|
72 |
+
dict(type='LoadImageFromFile'),
|
73 |
+
dict(
|
74 |
+
type='MultiScaleFlipAug',
|
75 |
+
img_scale=(1024, 1024),
|
76 |
+
flip=False,
|
77 |
+
transforms=[
|
78 |
+
dict(type='RResize'),
|
79 |
+
dict(
|
80 |
+
type='Normalize',
|
81 |
+
mean=[123.675, 116.28, 103.53],
|
82 |
+
std=[58.395, 57.12, 57.375],
|
83 |
+
to_rgb=True),
|
84 |
+
dict(type='Pad', size_divisor=32),
|
85 |
+
dict(type='DefaultFormatBundle'),
|
86 |
+
dict(type='Collect', keys=['img'])
|
87 |
+
])
|
88 |
+
],
|
89 |
+
version='le90'),
|
90 |
+
test=dict(
|
91 |
+
type='DOTADataset',
|
92 |
+
ann_file='data/split_1024_dota1_0/test/images/',
|
93 |
+
img_prefix='data/split_1024_dota1_0/test/images/',
|
94 |
+
pipeline=[
|
95 |
+
dict(type='LoadImageFromFile'),
|
96 |
+
dict(
|
97 |
+
type='MultiScaleFlipAug',
|
98 |
+
img_scale=(1024, 1024),
|
99 |
+
flip=False,
|
100 |
+
transforms=[
|
101 |
+
dict(type='RResize'),
|
102 |
+
dict(
|
103 |
+
type='Normalize',
|
104 |
+
mean=[123.675, 116.28, 103.53],
|
105 |
+
std=[58.395, 57.12, 57.375],
|
106 |
+
to_rgb=True),
|
107 |
+
dict(type='Pad', size_divisor=32),
|
108 |
+
dict(type='DefaultFormatBundle'),
|
109 |
+
dict(type='Collect', keys=['img'])
|
110 |
+
])
|
111 |
+
],
|
112 |
+
version='le90'))
|
113 |
+
evaluation = dict(interval=1, metric='mAP')
|
114 |
+
optimizer = dict(type='SGD', lr=0.005, momentum=0.9, weight_decay=0.0001)
|
115 |
+
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
|
116 |
+
lr_config = dict(
|
117 |
+
policy='step',
|
118 |
+
warmup='linear',
|
119 |
+
warmup_iters=500,
|
120 |
+
warmup_ratio=0.3333333333333333,
|
121 |
+
step=[8, 11])
|
122 |
+
runner = dict(type='EpochBasedRunner', max_epochs=12)
|
123 |
+
checkpoint_config = dict(interval=1)
|
124 |
+
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')])
|
125 |
+
dist_params = dict(backend='nccl')
|
126 |
+
log_level = 'INFO'
|
127 |
+
load_from = None
|
128 |
+
resume_from = None
|
129 |
+
workflow = [('train', 1)]
|
130 |
+
opencv_num_threads = 0
|
131 |
+
mp_start_method = 'fork'
|
132 |
+
angle_version = 'le90'
|
133 |
+
model = dict(
|
134 |
+
type='OrientedRCNN',
|
135 |
+
backbone=dict(
|
136 |
+
type='ResNet',
|
137 |
+
depth=50,
|
138 |
+
num_stages=4,
|
139 |
+
out_indices=(0, 1, 2, 3),
|
140 |
+
frozen_stages=1,
|
141 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
142 |
+
norm_eval=True,
|
143 |
+
style='pytorch',
|
144 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
|
145 |
+
neck=dict(
|
146 |
+
type='FPN',
|
147 |
+
in_channels=[256, 512, 1024, 2048],
|
148 |
+
out_channels=256,
|
149 |
+
num_outs=5),
|
150 |
+
rpn_head=dict(
|
151 |
+
type='OrientedRPNHead',
|
152 |
+
in_channels=256,
|
153 |
+
feat_channels=256,
|
154 |
+
version='le90',
|
155 |
+
anchor_generator=dict(
|
156 |
+
type='AnchorGenerator',
|
157 |
+
scales=[8],
|
158 |
+
ratios=[0.5, 1.0, 2.0],
|
159 |
+
strides=[4, 8, 16, 32, 64]),
|
160 |
+
bbox_coder=dict(
|
161 |
+
type='MidpointOffsetCoder',
|
162 |
+
angle_range='le90',
|
163 |
+
target_means=[0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
|
164 |
+
target_stds=[1.0, 1.0, 1.0, 1.0, 0.5, 0.5]),
|
165 |
+
loss_cls=dict(
|
166 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
167 |
+
loss_bbox=dict(
|
168 |
+
type='SmoothL1Loss', beta=0.1111111111111111, loss_weight=1.0)),
|
169 |
+
roi_head=dict(
|
170 |
+
type='OrientedStandardRoIHead',
|
171 |
+
bbox_roi_extractor=dict(
|
172 |
+
type='RotatedSingleRoIExtractor',
|
173 |
+
roi_layer=dict(
|
174 |
+
type='RoIAlignRotated',
|
175 |
+
out_size=7,
|
176 |
+
sample_num=2,
|
177 |
+
clockwise=True),
|
178 |
+
out_channels=256,
|
179 |
+
featmap_strides=[4, 8, 16, 32]),
|
180 |
+
bbox_head=dict(
|
181 |
+
type='RotatedShared2FCBBoxHead',
|
182 |
+
in_channels=256,
|
183 |
+
fc_out_channels=1024,
|
184 |
+
roi_feat_size=7,
|
185 |
+
num_classes=15,
|
186 |
+
bbox_coder=dict(
|
187 |
+
type='DeltaXYWHAOBBoxCoder',
|
188 |
+
angle_range='le90',
|
189 |
+
norm_factor=None,
|
190 |
+
edge_swap=True,
|
191 |
+
proj_xy=True,
|
192 |
+
target_means=(0.0, 0.0, 0.0, 0.0, 0.0),
|
193 |
+
target_stds=(0.1, 0.1, 0.2, 0.2, 0.1)),
|
194 |
+
reg_class_agnostic=True,
|
195 |
+
loss_cls=dict(
|
196 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
197 |
+
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))),
|
198 |
+
train_cfg=dict(
|
199 |
+
rpn=dict(
|
200 |
+
assigner=dict(
|
201 |
+
type='MaxIoUAssigner',
|
202 |
+
pos_iou_thr=0.7,
|
203 |
+
neg_iou_thr=0.3,
|
204 |
+
min_pos_iou=0.3,
|
205 |
+
match_low_quality=True,
|
206 |
+
ignore_iof_thr=-1),
|
207 |
+
sampler=dict(
|
208 |
+
type='RandomSampler',
|
209 |
+
num=256,
|
210 |
+
pos_fraction=0.5,
|
211 |
+
neg_pos_ub=-1,
|
212 |
+
add_gt_as_proposals=False),
|
213 |
+
allowed_border=0,
|
214 |
+
pos_weight=-1,
|
215 |
+
debug=False),
|
216 |
+
rpn_proposal=dict(
|
217 |
+
nms_pre=2000,
|
218 |
+
max_per_img=2000,
|
219 |
+
nms=dict(type='nms', iou_threshold=0.8),
|
220 |
+
min_bbox_size=0),
|
221 |
+
rcnn=dict(
|
222 |
+
assigner=dict(
|
223 |
+
type='MaxIoUAssigner',
|
224 |
+
pos_iou_thr=0.5,
|
225 |
+
neg_iou_thr=0.5,
|
226 |
+
min_pos_iou=0.5,
|
227 |
+
match_low_quality=False,
|
228 |
+
iou_calculator=dict(type='RBboxOverlaps2D'),
|
229 |
+
ignore_iof_thr=-1),
|
230 |
+
sampler=dict(
|
231 |
+
type='RRandomSampler',
|
232 |
+
num=512,
|
233 |
+
pos_fraction=0.25,
|
234 |
+
neg_pos_ub=-1,
|
235 |
+
add_gt_as_proposals=True),
|
236 |
+
pos_weight=-1,
|
237 |
+
debug=False)),
|
238 |
+
test_cfg=dict(
|
239 |
+
rpn=dict(
|
240 |
+
nms_pre=2000,
|
241 |
+
max_per_img=2000,
|
242 |
+
nms=dict(type='nms', iou_threshold=0.8),
|
243 |
+
min_bbox_size=0),
|
244 |
+
rcnn=dict(
|
245 |
+
nms_pre=2000,
|
246 |
+
min_bbox_size=0,
|
247 |
+
score_thr=0.05,
|
248 |
+
nms=dict(iou_thr=0.1),
|
249 |
+
max_per_img=2000)))
|