Text Generation
Transformers
PyTorch
Safetensors
Swedish
ctrl
Inference Endpoints
dkalpakchi commited on
Commit
59392d8
1 Parent(s): 9a2d1e9

Uploaded model, tokenizer and the minimally necessary code

Browse files
Files changed (9) hide show
  1. .gitattributes +1 -0
  2. config.json +25 -0
  3. control_codes.py +42 -0
  4. ctrl_args.bin +3 -0
  5. pytorch_model.bin +3 -0
  6. tokenizer.json +3 -0
  7. trainer_state.json +1684 -0
  8. training_args.bin +3 -0
  9. util.py +48 -0
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "CTRLLMHeadModel"
4
+ ],
5
+ "attn_pdrop": 0.1,
6
+ "dff": 4096,
7
+ "embd_pdrop": 0.1,
8
+ "initializer_range": 0.02,
9
+ "layer_norm_epsilon": 1e-06,
10
+ "model_type": "ctrl",
11
+ "n_embd": 640,
12
+ "n_head": 16,
13
+ "n_layer": 48,
14
+ "n_positions": 256,
15
+ "resid_pdrop": 0.1,
16
+ "summary_activation": null,
17
+ "summary_first_dropout": 0.1,
18
+ "summary_proj_to_labels": true,
19
+ "summary_type": "cls_index",
20
+ "summary_use_proj": true,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.20.1",
23
+ "use_cache": true,
24
+ "vocab_size": 256000
25
+ }
control_codes.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ START_C_CODES = {
2
+ "admin": ":förvaltning:",
3
+ "ads": ":anons:",
4
+ "blogs": ":blogg:",
5
+ "blogs/economy": ":blogg::ekonomi:",
6
+ "blogs/sport": ":blogg::idrott:",
7
+ "blogs/tech": ":blogg::teknologi:",
8
+ "debate": ":debatt:",
9
+ "forum": ":forum:",
10
+ "forum/economy": ":forum::ekonomi:",
11
+ "forum/law": ":forum::juridik:",
12
+ "forum/sport": ":forum::idrott:",
13
+ "forum/tech": ":forum::teknologi:",
14
+ "forum/travel": ":forum::resor:",
15
+ "info": ":info:",
16
+ "info/business": ":info::affar:",
17
+ "info/lifestyle": ":info::livstil:",
18
+ "info/medical": ":info::med:",
19
+ "info/travel": ":info::resor:",
20
+ "news": ":nyheter:",
21
+ "news/culture": ":nyheter::kultur:",
22
+ "news/economy": ":nyheter::ekonomi:",
23
+ "news/fashion": ":nyheter::mode:",
24
+ "news/food": ":nyheter::mat:",
25
+ "news/lifestyle": ":nyheter::livstil:",
26
+ "news/opinion": ":nyheter::asikt:",
27
+ "news/politics": ":nyheter::politik:",
28
+ "news/pressrelease": ":nyheter::pressmeddelande:",
29
+ "news/science": ":nyheter::vetenskap:",
30
+ "news/sport": ":nyheter:idrott:",
31
+ "news/sustainability": ":nyheter::hallbarhet:",
32
+ "news/tech": ":nyheter::teknologi:",
33
+ "news/travel": ":nyheter::resor:",
34
+ "news/weather": ":nyheter::vader:",
35
+ "review": ":recension:",
36
+ "simple": ":lattlast:",
37
+ "wiki": ":wiki:",
38
+ "lit": ":litteratur:",
39
+ "title": ":rubrik:",
40
+ }
41
+
42
+ END_C_CODES = {k: "{}$".format(v) for k, v in START_C_CODES.items()}
ctrl_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:457cd5db67f11777d668b948865b1aae5445047ffd2b76081fad0ad9ad0b6cba
3
+ size 687
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de96e4fcdc83d5b4118943f02d9e4af2d036cf408e16188ea0e68f771d2c158d
3
+ size 1979740537
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed5866b9343d3944816f82b1dd7db82073dc4763ce3d21860211896b17304320
3
+ size 11739927
trainer_state.json ADDED
@@ -0,0 +1,1684 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 28.5,
5
+ "global_step": 2786844,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.1,
12
+ "learning_rate": 0.020000000000000004,
13
+ "loss": 5.3687,
14
+ "step": 10000
15
+ },
16
+ {
17
+ "epoch": 0.2,
18
+ "learning_rate": 0.04000000000000001,
19
+ "loss": 4.0531,
20
+ "step": 20000
21
+ },
22
+ {
23
+ "epoch": 0.31,
24
+ "learning_rate": 0.04993567245443037,
25
+ "loss": 3.8149,
26
+ "step": 30000
27
+ },
28
+ {
29
+ "epoch": 0.41,
30
+ "learning_rate": 0.0498070173632911,
31
+ "loss": 3.6549,
32
+ "step": 40000
33
+ },
34
+ {
35
+ "epoch": 0.51,
36
+ "learning_rate": 0.04967836227215183,
37
+ "loss": 3.5544,
38
+ "step": 50000
39
+ },
40
+ {
41
+ "epoch": 0.61,
42
+ "learning_rate": 0.049549707181012564,
43
+ "loss": 3.4935,
44
+ "step": 60000
45
+ },
46
+ {
47
+ "epoch": 0.72,
48
+ "learning_rate": 0.0494210520898733,
49
+ "loss": 3.447,
50
+ "step": 70000
51
+ },
52
+ {
53
+ "epoch": 0.82,
54
+ "learning_rate": 0.049292396998734035,
55
+ "loss": 3.4134,
56
+ "step": 80000
57
+ },
58
+ {
59
+ "epoch": 0.92,
60
+ "learning_rate": 0.04916374190759477,
61
+ "loss": 3.3861,
62
+ "step": 90000
63
+ },
64
+ {
65
+ "epoch": 1.02,
66
+ "learning_rate": 0.049035086816455506,
67
+ "loss": 3.3523,
68
+ "step": 100000
69
+ },
70
+ {
71
+ "epoch": 1.12,
72
+ "learning_rate": 0.04890643172531624,
73
+ "loss": 3.3063,
74
+ "step": 110000
75
+ },
76
+ {
77
+ "epoch": 1.23,
78
+ "learning_rate": 0.04877777663417697,
79
+ "loss": 3.2983,
80
+ "step": 120000
81
+ },
82
+ {
83
+ "epoch": 1.33,
84
+ "learning_rate": 0.0486491215430377,
85
+ "loss": 3.2874,
86
+ "step": 130000
87
+ },
88
+ {
89
+ "epoch": 1.43,
90
+ "learning_rate": 0.04852046645189844,
91
+ "loss": 3.2785,
92
+ "step": 140000
93
+ },
94
+ {
95
+ "epoch": 1.53,
96
+ "learning_rate": 0.04839181136075917,
97
+ "loss": 3.2698,
98
+ "step": 150000
99
+ },
100
+ {
101
+ "epoch": 1.64,
102
+ "learning_rate": 0.048263156269619904,
103
+ "loss": 3.2599,
104
+ "step": 160000
105
+ },
106
+ {
107
+ "epoch": 1.74,
108
+ "learning_rate": 0.04813450117848064,
109
+ "loss": 3.2503,
110
+ "step": 170000
111
+ },
112
+ {
113
+ "epoch": 1.84,
114
+ "learning_rate": 0.048005846087341375,
115
+ "loss": 3.2432,
116
+ "step": 180000
117
+ },
118
+ {
119
+ "epoch": 1.94,
120
+ "learning_rate": 0.04787719099620211,
121
+ "loss": 3.2347,
122
+ "step": 190000
123
+ },
124
+ {
125
+ "epoch": 2.05,
126
+ "learning_rate": 0.04774853590506284,
127
+ "loss": 3.1812,
128
+ "step": 200000
129
+ },
130
+ {
131
+ "epoch": 2.15,
132
+ "learning_rate": 0.04761988081392357,
133
+ "loss": 3.1865,
134
+ "step": 210000
135
+ },
136
+ {
137
+ "epoch": 2.25,
138
+ "learning_rate": 0.0474912257227843,
139
+ "loss": 3.1873,
140
+ "step": 220000
141
+ },
142
+ {
143
+ "epoch": 2.35,
144
+ "learning_rate": 0.047362570631645035,
145
+ "loss": 3.1842,
146
+ "step": 230000
147
+ },
148
+ {
149
+ "epoch": 2.45,
150
+ "learning_rate": 0.047233915540505766,
151
+ "loss": 3.1824,
152
+ "step": 240000
153
+ },
154
+ {
155
+ "epoch": 2.56,
156
+ "learning_rate": 0.047105260449366505,
157
+ "loss": 3.1806,
158
+ "step": 250000
159
+ },
160
+ {
161
+ "epoch": 2.66,
162
+ "learning_rate": 0.04697660535822724,
163
+ "loss": 3.177,
164
+ "step": 260000
165
+ },
166
+ {
167
+ "epoch": 2.76,
168
+ "learning_rate": 0.04684795026708797,
169
+ "loss": 3.1741,
170
+ "step": 270000
171
+ },
172
+ {
173
+ "epoch": 2.86,
174
+ "learning_rate": 0.04671929517594871,
175
+ "loss": 3.1709,
176
+ "step": 280000
177
+ },
178
+ {
179
+ "epoch": 2.97,
180
+ "learning_rate": 0.04659064008480944,
181
+ "loss": 3.1682,
182
+ "step": 290000
183
+ },
184
+ {
185
+ "epoch": 3.07,
186
+ "learning_rate": 0.04646198499367017,
187
+ "loss": 3.1382,
188
+ "step": 300000
189
+ },
190
+ {
191
+ "epoch": 3.17,
192
+ "learning_rate": 0.046333329902530904,
193
+ "loss": 3.1283,
194
+ "step": 310000
195
+ },
196
+ {
197
+ "epoch": 3.27,
198
+ "learning_rate": 0.04620467481139164,
199
+ "loss": 3.1318,
200
+ "step": 320000
201
+ },
202
+ {
203
+ "epoch": 3.37,
204
+ "learning_rate": 0.046076019720252374,
205
+ "loss": 3.1319,
206
+ "step": 330000
207
+ },
208
+ {
209
+ "epoch": 3.48,
210
+ "learning_rate": 0.045947364629113106,
211
+ "loss": 3.1335,
212
+ "step": 340000
213
+ },
214
+ {
215
+ "epoch": 3.58,
216
+ "learning_rate": 0.04581870953797384,
217
+ "loss": 3.1326,
218
+ "step": 350000
219
+ },
220
+ {
221
+ "epoch": 3.68,
222
+ "learning_rate": 0.04569005444683458,
223
+ "loss": 3.1306,
224
+ "step": 360000
225
+ },
226
+ {
227
+ "epoch": 3.78,
228
+ "learning_rate": 0.04556139935569531,
229
+ "loss": 3.1289,
230
+ "step": 370000
231
+ },
232
+ {
233
+ "epoch": 3.89,
234
+ "learning_rate": 0.04543274426455604,
235
+ "loss": 3.1275,
236
+ "step": 380000
237
+ },
238
+ {
239
+ "epoch": 3.99,
240
+ "learning_rate": 0.04530408917341677,
241
+ "loss": 3.1259,
242
+ "step": 390000
243
+ },
244
+ {
245
+ "epoch": 4.09,
246
+ "learning_rate": 0.045175434082277505,
247
+ "loss": 3.0882,
248
+ "step": 400000
249
+ },
250
+ {
251
+ "epoch": 4.19,
252
+ "learning_rate": 0.04504677899113824,
253
+ "loss": 3.094,
254
+ "step": 410000
255
+ },
256
+ {
257
+ "epoch": 4.3,
258
+ "learning_rate": 0.04491812389999897,
259
+ "loss": 3.0958,
260
+ "step": 420000
261
+ },
262
+ {
263
+ "epoch": 4.4,
264
+ "learning_rate": 0.04478946880885971,
265
+ "loss": 3.0976,
266
+ "step": 430000
267
+ },
268
+ {
269
+ "epoch": 4.5,
270
+ "learning_rate": 0.04466081371772044,
271
+ "loss": 3.0996,
272
+ "step": 440000
273
+ },
274
+ {
275
+ "epoch": 4.6,
276
+ "learning_rate": 0.04453215862658117,
277
+ "loss": 3.099,
278
+ "step": 450000
279
+ },
280
+ {
281
+ "epoch": 4.7,
282
+ "learning_rate": 0.04440350353544191,
283
+ "loss": 3.1,
284
+ "step": 460000
285
+ },
286
+ {
287
+ "epoch": 4.81,
288
+ "learning_rate": 0.04427484844430264,
289
+ "loss": 3.0993,
290
+ "step": 470000
291
+ },
292
+ {
293
+ "epoch": 4.91,
294
+ "learning_rate": 0.044146193353163374,
295
+ "loss": 3.0985,
296
+ "step": 480000
297
+ },
298
+ {
299
+ "epoch": 5.01,
300
+ "learning_rate": 0.044017538262024106,
301
+ "loss": 3.094,
302
+ "step": 490000
303
+ },
304
+ {
305
+ "epoch": 5.11,
306
+ "learning_rate": 0.043888883170884845,
307
+ "loss": 3.0646,
308
+ "step": 500000
309
+ },
310
+ {
311
+ "epoch": 5.22,
312
+ "learning_rate": 0.043760228079745576,
313
+ "loss": 3.0694,
314
+ "step": 510000
315
+ },
316
+ {
317
+ "epoch": 5.32,
318
+ "learning_rate": 0.04363157298860631,
319
+ "loss": 3.0712,
320
+ "step": 520000
321
+ },
322
+ {
323
+ "epoch": 5.42,
324
+ "learning_rate": 0.04350291789746704,
325
+ "loss": 3.0736,
326
+ "step": 530000
327
+ },
328
+ {
329
+ "epoch": 5.52,
330
+ "learning_rate": 0.04337426280632778,
331
+ "loss": 3.0752,
332
+ "step": 540000
333
+ },
334
+ {
335
+ "epoch": 5.62,
336
+ "learning_rate": 0.04324560771518851,
337
+ "loss": 3.0759,
338
+ "step": 550000
339
+ },
340
+ {
341
+ "epoch": 5.73,
342
+ "learning_rate": 0.04311695262404924,
343
+ "loss": 3.0762,
344
+ "step": 560000
345
+ },
346
+ {
347
+ "epoch": 5.83,
348
+ "learning_rate": 0.042988297532909975,
349
+ "loss": 3.0756,
350
+ "step": 570000
351
+ },
352
+ {
353
+ "epoch": 5.93,
354
+ "learning_rate": 0.04285964244177071,
355
+ "loss": 3.076,
356
+ "step": 580000
357
+ },
358
+ {
359
+ "epoch": 6.03,
360
+ "learning_rate": 0.04273098735063144,
361
+ "loss": 3.0412,
362
+ "step": 590000
363
+ },
364
+ {
365
+ "epoch": 6.14,
366
+ "learning_rate": 0.04260233225949217,
367
+ "loss": 3.0464,
368
+ "step": 600000
369
+ },
370
+ {
371
+ "epoch": 6.24,
372
+ "learning_rate": 0.04247367716835291,
373
+ "loss": 3.05,
374
+ "step": 610000
375
+ },
376
+ {
377
+ "epoch": 6.34,
378
+ "learning_rate": 0.04234502207721364,
379
+ "loss": 3.0539,
380
+ "step": 620000
381
+ },
382
+ {
383
+ "epoch": 6.44,
384
+ "learning_rate": 0.04221636698607437,
385
+ "loss": 3.0554,
386
+ "step": 630000
387
+ },
388
+ {
389
+ "epoch": 6.55,
390
+ "learning_rate": 0.042087711894935105,
391
+ "loss": 3.0558,
392
+ "step": 640000
393
+ },
394
+ {
395
+ "epoch": 6.65,
396
+ "learning_rate": 0.041959056803795844,
397
+ "loss": 3.057,
398
+ "step": 650000
399
+ },
400
+ {
401
+ "epoch": 6.75,
402
+ "learning_rate": 0.041830401712656576,
403
+ "loss": 3.0584,
404
+ "step": 660000
405
+ },
406
+ {
407
+ "epoch": 6.85,
408
+ "learning_rate": 0.04170174662151731,
409
+ "loss": 3.0585,
410
+ "step": 670000
411
+ },
412
+ {
413
+ "epoch": 6.95,
414
+ "learning_rate": 0.04157309153037805,
415
+ "loss": 3.0593,
416
+ "step": 680000
417
+ },
418
+ {
419
+ "epoch": 7.06,
420
+ "learning_rate": 0.04144443643923878,
421
+ "loss": 3.0408,
422
+ "step": 690000
423
+ },
424
+ {
425
+ "epoch": 7.16,
426
+ "learning_rate": 0.04131578134809951,
427
+ "loss": 3.0325,
428
+ "step": 700000
429
+ },
430
+ {
431
+ "epoch": 7.26,
432
+ "learning_rate": 0.04118712625696024,
433
+ "loss": 3.035,
434
+ "step": 710000
435
+ },
436
+ {
437
+ "epoch": 7.36,
438
+ "learning_rate": 0.04105847116582098,
439
+ "loss": 3.0373,
440
+ "step": 720000
441
+ },
442
+ {
443
+ "epoch": 7.47,
444
+ "learning_rate": 0.04092981607468171,
445
+ "loss": 3.0405,
446
+ "step": 730000
447
+ },
448
+ {
449
+ "epoch": 7.57,
450
+ "learning_rate": 0.040801160983542445,
451
+ "loss": 3.0403,
452
+ "step": 740000
453
+ },
454
+ {
455
+ "epoch": 7.67,
456
+ "learning_rate": 0.04067250589240318,
457
+ "loss": 3.0431,
458
+ "step": 750000
459
+ },
460
+ {
461
+ "epoch": 7.77,
462
+ "learning_rate": 0.04054385080126391,
463
+ "loss": 3.0444,
464
+ "step": 760000
465
+ },
466
+ {
467
+ "epoch": 7.87,
468
+ "learning_rate": 0.04041519571012464,
469
+ "loss": 3.0445,
470
+ "step": 770000
471
+ },
472
+ {
473
+ "epoch": 7.98,
474
+ "learning_rate": 0.04028654061898537,
475
+ "loss": 3.0452,
476
+ "step": 780000
477
+ },
478
+ {
479
+ "epoch": 8.08,
480
+ "learning_rate": 0.04015788552784611,
481
+ "loss": 3.0217,
482
+ "step": 790000
483
+ },
484
+ {
485
+ "epoch": 8.18,
486
+ "learning_rate": 0.04002923043670684,
487
+ "loss": 3.02,
488
+ "step": 800000
489
+ },
490
+ {
491
+ "epoch": 8.28,
492
+ "learning_rate": 0.039900575345567575,
493
+ "loss": 3.0233,
494
+ "step": 810000
495
+ },
496
+ {
497
+ "epoch": 8.39,
498
+ "learning_rate": 0.03977192025442831,
499
+ "loss": 3.0259,
500
+ "step": 820000
501
+ },
502
+ {
503
+ "epoch": 8.49,
504
+ "learning_rate": 0.039643265163289046,
505
+ "loss": 3.0271,
506
+ "step": 830000
507
+ },
508
+ {
509
+ "epoch": 8.59,
510
+ "learning_rate": 0.03951461007214978,
511
+ "loss": 3.0121,
512
+ "step": 840000
513
+ },
514
+ {
515
+ "epoch": 8.69,
516
+ "learning_rate": 0.03938595498101051,
517
+ "loss": 3.0161,
518
+ "step": 850000
519
+ },
520
+ {
521
+ "epoch": 8.79,
522
+ "learning_rate": 0.03925729988987125,
523
+ "loss": 3.0195,
524
+ "step": 860000
525
+ },
526
+ {
527
+ "epoch": 8.9,
528
+ "learning_rate": 0.03912864479873198,
529
+ "loss": 3.021,
530
+ "step": 870000
531
+ },
532
+ {
533
+ "epoch": 9.0,
534
+ "learning_rate": 0.03899998970759271,
535
+ "loss": 3.0228,
536
+ "step": 880000
537
+ },
538
+ {
539
+ "epoch": 9.1,
540
+ "learning_rate": 0.038871334616453444,
541
+ "loss": 3.0073,
542
+ "step": 890000
543
+ },
544
+ {
545
+ "epoch": 9.2,
546
+ "learning_rate": 0.03874267952531418,
547
+ "loss": 3.0114,
548
+ "step": 900000
549
+ },
550
+ {
551
+ "epoch": 9.31,
552
+ "learning_rate": 0.038614024434174915,
553
+ "loss": 3.0151,
554
+ "step": 910000
555
+ },
556
+ {
557
+ "epoch": 9.41,
558
+ "learning_rate": 0.03848536934303565,
559
+ "loss": 3.0175,
560
+ "step": 920000
561
+ },
562
+ {
563
+ "epoch": 9.51,
564
+ "learning_rate": 0.03835671425189638,
565
+ "loss": 3.0193,
566
+ "step": 930000
567
+ },
568
+ {
569
+ "epoch": 9.61,
570
+ "learning_rate": 0.03822805916075711,
571
+ "loss": 3.0185,
572
+ "step": 940000
573
+ },
574
+ {
575
+ "epoch": 9.72,
576
+ "learning_rate": 0.03809940406961784,
577
+ "loss": 3.0228,
578
+ "step": 950000
579
+ },
580
+ {
581
+ "epoch": 9.82,
582
+ "learning_rate": 0.037970748978478575,
583
+ "loss": 3.0226,
584
+ "step": 960000
585
+ },
586
+ {
587
+ "epoch": 9.92,
588
+ "learning_rate": 0.03784209388733931,
589
+ "loss": 3.0227,
590
+ "step": 970000
591
+ },
592
+ {
593
+ "epoch": 10.02,
594
+ "learning_rate": 0.037713438796200045,
595
+ "loss": 3.017,
596
+ "step": 980000
597
+ },
598
+ {
599
+ "epoch": 10.12,
600
+ "learning_rate": 0.03758478370506078,
601
+ "loss": 2.9992,
602
+ "step": 990000
603
+ },
604
+ {
605
+ "epoch": 10.23,
606
+ "learning_rate": 0.03745612861392151,
607
+ "loss": 3.0007,
608
+ "step": 1000000
609
+ },
610
+ {
611
+ "epoch": 10.33,
612
+ "learning_rate": 0.03732747352278225,
613
+ "loss": 3.0047,
614
+ "step": 1010000
615
+ },
616
+ {
617
+ "epoch": 10.43,
618
+ "learning_rate": 0.03719881843164298,
619
+ "loss": 3.0075,
620
+ "step": 1020000
621
+ },
622
+ {
623
+ "epoch": 10.53,
624
+ "learning_rate": 0.03707016334050371,
625
+ "loss": 3.0095,
626
+ "step": 1030000
627
+ },
628
+ {
629
+ "epoch": 10.64,
630
+ "learning_rate": 0.03694150824936445,
631
+ "loss": 3.0101,
632
+ "step": 1040000
633
+ },
634
+ {
635
+ "epoch": 10.74,
636
+ "learning_rate": 0.03681285315822518,
637
+ "loss": 3.0123,
638
+ "step": 1050000
639
+ },
640
+ {
641
+ "epoch": 10.84,
642
+ "learning_rate": 0.036684198067085914,
643
+ "loss": 3.013,
644
+ "step": 1060000
645
+ },
646
+ {
647
+ "epoch": 10.94,
648
+ "learning_rate": 0.036555542975946646,
649
+ "loss": 3.0121,
650
+ "step": 1070000
651
+ },
652
+ {
653
+ "epoch": 11.04,
654
+ "learning_rate": 0.03642688788480738,
655
+ "loss": 2.9892,
656
+ "step": 1080000
657
+ },
658
+ {
659
+ "epoch": 11.15,
660
+ "learning_rate": 0.03629823279366811,
661
+ "loss": 2.9908,
662
+ "step": 1090000
663
+ },
664
+ {
665
+ "epoch": 11.25,
666
+ "learning_rate": 0.03616957770252884,
667
+ "loss": 2.9941,
668
+ "step": 1100000
669
+ },
670
+ {
671
+ "epoch": 11.35,
672
+ "learning_rate": 0.036040922611389574,
673
+ "loss": 2.9976,
674
+ "step": 1110000
675
+ },
676
+ {
677
+ "epoch": 11.45,
678
+ "learning_rate": 0.03591226752025031,
679
+ "loss": 2.9992,
680
+ "step": 1120000
681
+ },
682
+ {
683
+ "epoch": 11.56,
684
+ "learning_rate": 0.035783612429111045,
685
+ "loss": 3.0007,
686
+ "step": 1130000
687
+ },
688
+ {
689
+ "epoch": 11.66,
690
+ "learning_rate": 0.03565495733797178,
691
+ "loss": 3.0021,
692
+ "step": 1140000
693
+ },
694
+ {
695
+ "epoch": 11.76,
696
+ "learning_rate": 0.035526302246832515,
697
+ "loss": 3.0032,
698
+ "step": 1150000
699
+ },
700
+ {
701
+ "epoch": 11.86,
702
+ "learning_rate": 0.03539764715569325,
703
+ "loss": 3.0057,
704
+ "step": 1160000
705
+ },
706
+ {
707
+ "epoch": 11.97,
708
+ "learning_rate": 0.03526899206455398,
709
+ "loss": 3.0053,
710
+ "step": 1170000
711
+ },
712
+ {
713
+ "epoch": 12.07,
714
+ "learning_rate": 0.03514033697341471,
715
+ "loss": 2.9898,
716
+ "step": 1180000
717
+ },
718
+ {
719
+ "epoch": 12.17,
720
+ "learning_rate": 0.03501168188227545,
721
+ "loss": 2.9848,
722
+ "step": 1190000
723
+ },
724
+ {
725
+ "epoch": 12.27,
726
+ "learning_rate": 0.03488302679113618,
727
+ "loss": 2.9871,
728
+ "step": 1200000
729
+ },
730
+ {
731
+ "epoch": 12.37,
732
+ "learning_rate": 0.034754371699996914,
733
+ "loss": 2.9903,
734
+ "step": 1210000
735
+ },
736
+ {
737
+ "epoch": 12.48,
738
+ "learning_rate": 0.03462571660885765,
739
+ "loss": 2.9918,
740
+ "step": 1220000
741
+ },
742
+ {
743
+ "epoch": 12.58,
744
+ "learning_rate": 0.034497061517718385,
745
+ "loss": 2.9948,
746
+ "step": 1230000
747
+ },
748
+ {
749
+ "epoch": 12.68,
750
+ "learning_rate": 0.034368406426579116,
751
+ "loss": 2.9955,
752
+ "step": 1240000
753
+ },
754
+ {
755
+ "epoch": 12.78,
756
+ "learning_rate": 0.03423975133543985,
757
+ "loss": 2.9971,
758
+ "step": 1250000
759
+ },
760
+ {
761
+ "epoch": 12.89,
762
+ "learning_rate": 0.03411109624430058,
763
+ "loss": 2.9978,
764
+ "step": 1260000
765
+ },
766
+ {
767
+ "epoch": 12.99,
768
+ "learning_rate": 0.03398244115316131,
769
+ "loss": 2.9985,
770
+ "step": 1270000
771
+ },
772
+ {
773
+ "epoch": 13.09,
774
+ "learning_rate": 0.033853786062022044,
775
+ "loss": 2.9789,
776
+ "step": 1280000
777
+ },
778
+ {
779
+ "epoch": 13.19,
780
+ "learning_rate": 0.033725130970882776,
781
+ "loss": 2.9795,
782
+ "step": 1290000
783
+ },
784
+ {
785
+ "epoch": 13.29,
786
+ "learning_rate": 0.033596475879743515,
787
+ "loss": 2.9835,
788
+ "step": 1300000
789
+ },
790
+ {
791
+ "epoch": 13.4,
792
+ "learning_rate": 0.03346782078860425,
793
+ "loss": 2.9829,
794
+ "step": 1310000
795
+ },
796
+ {
797
+ "epoch": 13.5,
798
+ "learning_rate": 0.03333916569746498,
799
+ "loss": 2.9869,
800
+ "step": 1320000
801
+ },
802
+ {
803
+ "epoch": 13.6,
804
+ "learning_rate": 0.03321051060632572,
805
+ "loss": 2.9755,
806
+ "step": 1330000
807
+ },
808
+ {
809
+ "epoch": 13.7,
810
+ "learning_rate": 0.03308185551518645,
811
+ "loss": 2.978,
812
+ "step": 1340000
813
+ },
814
+ {
815
+ "epoch": 13.81,
816
+ "learning_rate": 0.03295320042404718,
817
+ "loss": 2.9811,
818
+ "step": 1350000
819
+ },
820
+ {
821
+ "epoch": 13.91,
822
+ "learning_rate": 0.03282454533290791,
823
+ "loss": 2.9824,
824
+ "step": 1360000
825
+ },
826
+ {
827
+ "epoch": 14.01,
828
+ "learning_rate": 0.03269589024176865,
829
+ "loss": 2.9832,
830
+ "step": 1370000
831
+ },
832
+ {
833
+ "epoch": 14.11,
834
+ "learning_rate": 0.032567235150629384,
835
+ "loss": 2.9726,
836
+ "step": 1380000
837
+ },
838
+ {
839
+ "epoch": 14.22,
840
+ "learning_rate": 0.032438580059490116,
841
+ "loss": 2.9762,
842
+ "step": 1390000
843
+ },
844
+ {
845
+ "epoch": 14.32,
846
+ "learning_rate": 0.03230992496835085,
847
+ "loss": 2.9786,
848
+ "step": 1400000
849
+ },
850
+ {
851
+ "epoch": 14.42,
852
+ "learning_rate": 0.03218126987721159,
853
+ "loss": 2.9804,
854
+ "step": 1410000
855
+ },
856
+ {
857
+ "epoch": 14.52,
858
+ "learning_rate": 0.03205261478607232,
859
+ "loss": 2.9821,
860
+ "step": 1420000
861
+ },
862
+ {
863
+ "epoch": 14.62,
864
+ "learning_rate": 0.03192395969493305,
865
+ "loss": 2.9825,
866
+ "step": 1430000
867
+ },
868
+ {
869
+ "epoch": 14.73,
870
+ "learning_rate": 0.03179530460379378,
871
+ "loss": 2.985,
872
+ "step": 1440000
873
+ },
874
+ {
875
+ "epoch": 14.83,
876
+ "learning_rate": 0.031666649512654514,
877
+ "loss": 2.9851,
878
+ "step": 1450000
879
+ },
880
+ {
881
+ "epoch": 14.93,
882
+ "learning_rate": 0.031537994421515246,
883
+ "loss": 2.9859,
884
+ "step": 1460000
885
+ },
886
+ {
887
+ "epoch": 15.03,
888
+ "learning_rate": 0.03140933933037598,
889
+ "loss": 2.9795,
890
+ "step": 1470000
891
+ },
892
+ {
893
+ "epoch": 15.14,
894
+ "learning_rate": 0.03128068423923672,
895
+ "loss": 2.9681,
896
+ "step": 1480000
897
+ },
898
+ {
899
+ "epoch": 15.24,
900
+ "learning_rate": 0.03115202914809745,
901
+ "loss": 2.9707,
902
+ "step": 1490000
903
+ },
904
+ {
905
+ "epoch": 15.34,
906
+ "learning_rate": 0.03102337405695818,
907
+ "loss": 2.9727,
908
+ "step": 1500000
909
+ },
910
+ {
911
+ "epoch": 15.44,
912
+ "learning_rate": 0.03089471896581892,
913
+ "loss": 2.9747,
914
+ "step": 1510000
915
+ },
916
+ {
917
+ "epoch": 15.54,
918
+ "learning_rate": 0.03076606387467965,
919
+ "loss": 2.9769,
920
+ "step": 1520000
921
+ },
922
+ {
923
+ "epoch": 15.65,
924
+ "learning_rate": 0.030637408783540383,
925
+ "loss": 2.9778,
926
+ "step": 1530000
927
+ },
928
+ {
929
+ "epoch": 15.75,
930
+ "learning_rate": 0.030508753692401115,
931
+ "loss": 2.9788,
932
+ "step": 1540000
933
+ },
934
+ {
935
+ "epoch": 15.85,
936
+ "learning_rate": 0.030380098601261854,
937
+ "loss": 2.9789,
938
+ "step": 1550000
939
+ },
940
+ {
941
+ "epoch": 15.95,
942
+ "learning_rate": 0.030251443510122586,
943
+ "loss": 2.9807,
944
+ "step": 1560000
945
+ },
946
+ {
947
+ "epoch": 16.06,
948
+ "learning_rate": 0.030122788418983318,
949
+ "loss": 2.9619,
950
+ "step": 1570000
951
+ },
952
+ {
953
+ "epoch": 16.16,
954
+ "learning_rate": 0.02999413332784405,
955
+ "loss": 2.9638,
956
+ "step": 1580000
957
+ },
958
+ {
959
+ "epoch": 16.26,
960
+ "learning_rate": 0.029865478236704785,
961
+ "loss": 2.9654,
962
+ "step": 1590000
963
+ },
964
+ {
965
+ "epoch": 16.36,
966
+ "learning_rate": 0.029736823145565517,
967
+ "loss": 2.9679,
968
+ "step": 1600000
969
+ },
970
+ {
971
+ "epoch": 16.46,
972
+ "learning_rate": 0.02960816805442625,
973
+ "loss": 2.9704,
974
+ "step": 1610000
975
+ },
976
+ {
977
+ "epoch": 16.57,
978
+ "learning_rate": 0.029479512963286988,
979
+ "loss": 2.9726,
980
+ "step": 1620000
981
+ },
982
+ {
983
+ "epoch": 16.67,
984
+ "learning_rate": 0.02935085787214772,
985
+ "loss": 2.9725,
986
+ "step": 1630000
987
+ },
988
+ {
989
+ "epoch": 16.77,
990
+ "learning_rate": 0.02922220278100845,
991
+ "loss": 2.9738,
992
+ "step": 1640000
993
+ },
994
+ {
995
+ "epoch": 16.87,
996
+ "learning_rate": 0.029093547689869183,
997
+ "loss": 2.9747,
998
+ "step": 1650000
999
+ },
1000
+ {
1001
+ "epoch": 16.98,
1002
+ "learning_rate": 0.02896489259872992,
1003
+ "loss": 2.9763,
1004
+ "step": 1660000
1005
+ },
1006
+ {
1007
+ "epoch": 17.08,
1008
+ "learning_rate": 0.02883623750759065,
1009
+ "loss": 2.9617,
1010
+ "step": 1670000
1011
+ },
1012
+ {
1013
+ "epoch": 17.18,
1014
+ "learning_rate": 0.028707582416451383,
1015
+ "loss": 2.9618,
1016
+ "step": 1680000
1017
+ },
1018
+ {
1019
+ "epoch": 17.28,
1020
+ "learning_rate": 0.028578927325312115,
1021
+ "loss": 2.9612,
1022
+ "step": 1690000
1023
+ },
1024
+ {
1025
+ "epoch": 17.39,
1026
+ "learning_rate": 0.028450272234172853,
1027
+ "loss": 2.9632,
1028
+ "step": 1700000
1029
+ },
1030
+ {
1031
+ "epoch": 17.49,
1032
+ "learning_rate": 0.028321617143033585,
1033
+ "loss": 2.9655,
1034
+ "step": 1710000
1035
+ },
1036
+ {
1037
+ "epoch": 17.59,
1038
+ "learning_rate": 0.028192962051894317,
1039
+ "loss": 2.9672,
1040
+ "step": 1720000
1041
+ },
1042
+ {
1043
+ "epoch": 17.69,
1044
+ "learning_rate": 0.028064306960755056,
1045
+ "loss": 2.9691,
1046
+ "step": 1730000
1047
+ },
1048
+ {
1049
+ "epoch": 17.79,
1050
+ "learning_rate": 0.027935651869615788,
1051
+ "loss": 2.9698,
1052
+ "step": 1740000
1053
+ },
1054
+ {
1055
+ "epoch": 17.9,
1056
+ "learning_rate": 0.02780699677847652,
1057
+ "loss": 2.9702,
1058
+ "step": 1750000
1059
+ },
1060
+ {
1061
+ "epoch": 18.0,
1062
+ "learning_rate": 0.027678341687337252,
1063
+ "loss": 2.9719,
1064
+ "step": 1760000
1065
+ },
1066
+ {
1067
+ "epoch": 18.1,
1068
+ "learning_rate": 0.027549686596197987,
1069
+ "loss": 2.9546,
1070
+ "step": 1770000
1071
+ },
1072
+ {
1073
+ "epoch": 18.2,
1074
+ "learning_rate": 0.02742103150505872,
1075
+ "loss": 2.9567,
1076
+ "step": 1780000
1077
+ },
1078
+ {
1079
+ "epoch": 18.31,
1080
+ "learning_rate": 0.02729237641391945,
1081
+ "loss": 2.9586,
1082
+ "step": 1790000
1083
+ },
1084
+ {
1085
+ "epoch": 18.41,
1086
+ "learning_rate": 0.02716372132278019,
1087
+ "loss": 2.9606,
1088
+ "step": 1800000
1089
+ },
1090
+ {
1091
+ "epoch": 18.51,
1092
+ "learning_rate": 0.02703506623164092,
1093
+ "loss": 2.9506,
1094
+ "step": 1810000
1095
+ },
1096
+ {
1097
+ "epoch": 18.61,
1098
+ "learning_rate": 0.026906411140501654,
1099
+ "loss": 2.9518,
1100
+ "step": 1820000
1101
+ },
1102
+ {
1103
+ "epoch": 18.71,
1104
+ "learning_rate": 0.026777756049362385,
1105
+ "loss": 2.9575,
1106
+ "step": 1830000
1107
+ },
1108
+ {
1109
+ "epoch": 18.82,
1110
+ "learning_rate": 0.02664910095822312,
1111
+ "loss": 2.9584,
1112
+ "step": 1840000
1113
+ },
1114
+ {
1115
+ "epoch": 18.92,
1116
+ "learning_rate": 0.026520445867083853,
1117
+ "loss": 2.9594,
1118
+ "step": 1850000
1119
+ },
1120
+ {
1121
+ "epoch": 19.02,
1122
+ "learning_rate": 0.026391790775944585,
1123
+ "loss": 2.9578,
1124
+ "step": 1860000
1125
+ },
1126
+ {
1127
+ "epoch": 19.12,
1128
+ "learning_rate": 0.026263135684805317,
1129
+ "loss": 2.9535,
1130
+ "step": 1870000
1131
+ },
1132
+ {
1133
+ "epoch": 19.23,
1134
+ "learning_rate": 0.026134480593666055,
1135
+ "loss": 2.9552,
1136
+ "step": 1880000
1137
+ },
1138
+ {
1139
+ "epoch": 19.33,
1140
+ "learning_rate": 0.026005825502526787,
1141
+ "loss": 2.9568,
1142
+ "step": 1890000
1143
+ },
1144
+ {
1145
+ "epoch": 19.43,
1146
+ "learning_rate": 0.02587717041138752,
1147
+ "loss": 2.9583,
1148
+ "step": 1900000
1149
+ },
1150
+ {
1151
+ "epoch": 19.53,
1152
+ "learning_rate": 0.025748515320248258,
1153
+ "loss": 2.9596,
1154
+ "step": 1910000
1155
+ },
1156
+ {
1157
+ "epoch": 19.64,
1158
+ "learning_rate": 0.02561986022910899,
1159
+ "loss": 2.9599,
1160
+ "step": 1920000
1161
+ },
1162
+ {
1163
+ "epoch": 19.74,
1164
+ "learning_rate": 0.025491205137969722,
1165
+ "loss": 2.9615,
1166
+ "step": 1930000
1167
+ },
1168
+ {
1169
+ "epoch": 19.84,
1170
+ "learning_rate": 0.025362550046830454,
1171
+ "loss": 2.9622,
1172
+ "step": 1940000
1173
+ },
1174
+ {
1175
+ "epoch": 19.94,
1176
+ "learning_rate": 0.02523389495569119,
1177
+ "loss": 2.9637,
1178
+ "step": 1950000
1179
+ },
1180
+ {
1181
+ "epoch": 20.04,
1182
+ "learning_rate": 0.02510523986455192,
1183
+ "loss": 2.9559,
1184
+ "step": 1960000
1185
+ },
1186
+ {
1187
+ "epoch": 20.15,
1188
+ "learning_rate": 0.024976584773412653,
1189
+ "loss": 2.9496,
1190
+ "step": 1970000
1191
+ },
1192
+ {
1193
+ "epoch": 20.25,
1194
+ "learning_rate": 0.02484792968227339,
1195
+ "loss": 2.9516,
1196
+ "step": 1980000
1197
+ },
1198
+ {
1199
+ "epoch": 20.35,
1200
+ "learning_rate": 0.024719274591134124,
1201
+ "loss": 2.9522,
1202
+ "step": 1990000
1203
+ },
1204
+ {
1205
+ "epoch": 20.45,
1206
+ "learning_rate": 0.024590619499994856,
1207
+ "loss": 2.9538,
1208
+ "step": 2000000
1209
+ },
1210
+ {
1211
+ "epoch": 20.56,
1212
+ "learning_rate": 0.02446196440885559,
1213
+ "loss": 2.9552,
1214
+ "step": 2010000
1215
+ },
1216
+ {
1217
+ "epoch": 20.66,
1218
+ "learning_rate": 0.024333309317716323,
1219
+ "loss": 2.957,
1220
+ "step": 2020000
1221
+ },
1222
+ {
1223
+ "epoch": 20.76,
1224
+ "learning_rate": 0.024204654226577055,
1225
+ "loss": 2.9572,
1226
+ "step": 2030000
1227
+ },
1228
+ {
1229
+ "epoch": 20.86,
1230
+ "learning_rate": 0.024075999135437787,
1231
+ "loss": 2.9586,
1232
+ "step": 2040000
1233
+ },
1234
+ {
1235
+ "epoch": 20.96,
1236
+ "learning_rate": 0.023947344044298522,
1237
+ "loss": 2.9609,
1238
+ "step": 2050000
1239
+ },
1240
+ {
1241
+ "epoch": 21.07,
1242
+ "learning_rate": 0.023818688953159254,
1243
+ "loss": 2.9429,
1244
+ "step": 2060000
1245
+ },
1246
+ {
1247
+ "epoch": 21.17,
1248
+ "learning_rate": 0.02369003386201999,
1249
+ "loss": 2.947,
1250
+ "step": 2070000
1251
+ },
1252
+ {
1253
+ "epoch": 21.27,
1254
+ "learning_rate": 0.023561378770880725,
1255
+ "loss": 2.9488,
1256
+ "step": 2080000
1257
+ },
1258
+ {
1259
+ "epoch": 21.37,
1260
+ "learning_rate": 0.023432723679741457,
1261
+ "loss": 2.9491,
1262
+ "step": 2090000
1263
+ },
1264
+ {
1265
+ "epoch": 21.48,
1266
+ "learning_rate": 0.023304068588602192,
1267
+ "loss": 2.9514,
1268
+ "step": 2100000
1269
+ },
1270
+ {
1271
+ "epoch": 21.58,
1272
+ "learning_rate": 0.023175413497462924,
1273
+ "loss": 2.9513,
1274
+ "step": 2110000
1275
+ },
1276
+ {
1277
+ "epoch": 21.68,
1278
+ "learning_rate": 0.023046758406323656,
1279
+ "loss": 2.9537,
1280
+ "step": 2120000
1281
+ },
1282
+ {
1283
+ "epoch": 21.78,
1284
+ "learning_rate": 0.022918103315184388,
1285
+ "loss": 2.9548,
1286
+ "step": 2130000
1287
+ },
1288
+ {
1289
+ "epoch": 21.88,
1290
+ "learning_rate": 0.022789448224045123,
1291
+ "loss": 2.9573,
1292
+ "step": 2140000
1293
+ },
1294
+ {
1295
+ "epoch": 21.99,
1296
+ "learning_rate": 0.022660793132905855,
1297
+ "loss": 2.9565,
1298
+ "step": 2150000
1299
+ },
1300
+ {
1301
+ "epoch": 22.09,
1302
+ "learning_rate": 0.02253213804176659,
1303
+ "loss": 2.9432,
1304
+ "step": 2160000
1305
+ },
1306
+ {
1307
+ "epoch": 22.19,
1308
+ "learning_rate": 0.022403482950627322,
1309
+ "loss": 2.9445,
1310
+ "step": 2170000
1311
+ },
1312
+ {
1313
+ "epoch": 22.29,
1314
+ "learning_rate": 0.022274827859488058,
1315
+ "loss": 2.9465,
1316
+ "step": 2180000
1317
+ },
1318
+ {
1319
+ "epoch": 22.4,
1320
+ "learning_rate": 0.022146172768348793,
1321
+ "loss": 2.9478,
1322
+ "step": 2190000
1323
+ },
1324
+ {
1325
+ "epoch": 22.5,
1326
+ "learning_rate": 0.022017517677209525,
1327
+ "loss": 2.9474,
1328
+ "step": 2200000
1329
+ },
1330
+ {
1331
+ "epoch": 22.6,
1332
+ "learning_rate": 0.021888862586070257,
1333
+ "loss": 2.9497,
1334
+ "step": 2210000
1335
+ },
1336
+ {
1337
+ "epoch": 22.7,
1338
+ "learning_rate": 0.02176020749493099,
1339
+ "loss": 2.9507,
1340
+ "step": 2220000
1341
+ },
1342
+ {
1343
+ "epoch": 22.81,
1344
+ "learning_rate": 0.021631552403791724,
1345
+ "loss": 2.9518,
1346
+ "step": 2230000
1347
+ },
1348
+ {
1349
+ "epoch": 22.91,
1350
+ "learning_rate": 0.021502897312652456,
1351
+ "loss": 2.9523,
1352
+ "step": 2240000
1353
+ },
1354
+ {
1355
+ "epoch": 23.01,
1356
+ "learning_rate": 0.02137424222151319,
1357
+ "loss": 2.951,
1358
+ "step": 2250000
1359
+ },
1360
+ {
1361
+ "epoch": 23.11,
1362
+ "learning_rate": 0.021245587130373923,
1363
+ "loss": 2.9394,
1364
+ "step": 2260000
1365
+ },
1366
+ {
1367
+ "epoch": 23.21,
1368
+ "learning_rate": 0.02111693203923466,
1369
+ "loss": 2.9426,
1370
+ "step": 2270000
1371
+ },
1372
+ {
1373
+ "epoch": 23.32,
1374
+ "learning_rate": 0.020988276948095394,
1375
+ "loss": 2.9425,
1376
+ "step": 2280000
1377
+ },
1378
+ {
1379
+ "epoch": 23.42,
1380
+ "learning_rate": 0.020859621856956126,
1381
+ "loss": 2.9449,
1382
+ "step": 2290000
1383
+ },
1384
+ {
1385
+ "epoch": 23.52,
1386
+ "learning_rate": 0.020730966765816858,
1387
+ "loss": 2.939,
1388
+ "step": 2300000
1389
+ },
1390
+ {
1391
+ "epoch": 23.62,
1392
+ "learning_rate": 0.02060231167467759,
1393
+ "loss": 2.939,
1394
+ "step": 2310000
1395
+ },
1396
+ {
1397
+ "epoch": 23.73,
1398
+ "learning_rate": 0.020473656583538325,
1399
+ "loss": 2.9414,
1400
+ "step": 2320000
1401
+ },
1402
+ {
1403
+ "epoch": 23.83,
1404
+ "learning_rate": 0.020345001492399057,
1405
+ "loss": 2.9433,
1406
+ "step": 2330000
1407
+ },
1408
+ {
1409
+ "epoch": 23.93,
1410
+ "learning_rate": 0.020216346401259792,
1411
+ "loss": 2.9436,
1412
+ "step": 2340000
1413
+ },
1414
+ {
1415
+ "epoch": 24.03,
1416
+ "learning_rate": 0.020087691310120524,
1417
+ "loss": 2.9421,
1418
+ "step": 2350000
1419
+ },
1420
+ {
1421
+ "epoch": 24.13,
1422
+ "learning_rate": 0.01995903621898126,
1423
+ "loss": 2.9385,
1424
+ "step": 2360000
1425
+ },
1426
+ {
1427
+ "epoch": 24.24,
1428
+ "learning_rate": 0.019830381127841995,
1429
+ "loss": 2.9413,
1430
+ "step": 2370000
1431
+ },
1432
+ {
1433
+ "epoch": 24.34,
1434
+ "learning_rate": 0.019701726036702727,
1435
+ "loss": 2.9426,
1436
+ "step": 2380000
1437
+ },
1438
+ {
1439
+ "epoch": 24.44,
1440
+ "learning_rate": 0.01957307094556346,
1441
+ "loss": 2.9423,
1442
+ "step": 2390000
1443
+ },
1444
+ {
1445
+ "epoch": 24.54,
1446
+ "learning_rate": 0.01944441585442419,
1447
+ "loss": 2.9442,
1448
+ "step": 2400000
1449
+ },
1450
+ {
1451
+ "epoch": 24.65,
1452
+ "learning_rate": 0.019315760763284926,
1453
+ "loss": 2.9457,
1454
+ "step": 2410000
1455
+ },
1456
+ {
1457
+ "epoch": 24.75,
1458
+ "learning_rate": 0.019187105672145658,
1459
+ "loss": 2.9455,
1460
+ "step": 2420000
1461
+ },
1462
+ {
1463
+ "epoch": 24.85,
1464
+ "learning_rate": 0.019058450581006393,
1465
+ "loss": 2.947,
1466
+ "step": 2430000
1467
+ },
1468
+ {
1469
+ "epoch": 24.95,
1470
+ "learning_rate": 0.018929795489867125,
1471
+ "loss": 2.9464,
1472
+ "step": 2440000
1473
+ },
1474
+ {
1475
+ "epoch": 25.06,
1476
+ "learning_rate": 0.01880114039872786,
1477
+ "loss": 2.9411,
1478
+ "step": 2450000
1479
+ },
1480
+ {
1481
+ "epoch": 25.16,
1482
+ "learning_rate": 0.018672485307588593,
1483
+ "loss": 2.9362,
1484
+ "step": 2460000
1485
+ },
1486
+ {
1487
+ "epoch": 25.26,
1488
+ "learning_rate": 0.018543830216449324,
1489
+ "loss": 2.9373,
1490
+ "step": 2470000
1491
+ },
1492
+ {
1493
+ "epoch": 25.36,
1494
+ "learning_rate": 0.01841517512531006,
1495
+ "loss": 2.9395,
1496
+ "step": 2480000
1497
+ },
1498
+ {
1499
+ "epoch": 25.46,
1500
+ "learning_rate": 0.018286520034170792,
1501
+ "loss": 2.9404,
1502
+ "step": 2490000
1503
+ },
1504
+ {
1505
+ "epoch": 25.57,
1506
+ "learning_rate": 0.018157864943031527,
1507
+ "loss": 2.9412,
1508
+ "step": 2500000
1509
+ },
1510
+ {
1511
+ "epoch": 25.67,
1512
+ "learning_rate": 0.01802920985189226,
1513
+ "loss": 2.9425,
1514
+ "step": 2510000
1515
+ },
1516
+ {
1517
+ "epoch": 25.77,
1518
+ "learning_rate": 0.017900554760752994,
1519
+ "loss": 2.943,
1520
+ "step": 2520000
1521
+ },
1522
+ {
1523
+ "epoch": 25.87,
1524
+ "learning_rate": 0.017771899669613726,
1525
+ "loss": 2.9446,
1526
+ "step": 2530000
1527
+ },
1528
+ {
1529
+ "epoch": 25.98,
1530
+ "learning_rate": 0.01764324457847446,
1531
+ "loss": 2.945,
1532
+ "step": 2540000
1533
+ },
1534
+ {
1535
+ "epoch": 26.08,
1536
+ "learning_rate": 0.017514589487335194,
1537
+ "loss": 2.9327,
1538
+ "step": 2550000
1539
+ },
1540
+ {
1541
+ "epoch": 26.18,
1542
+ "learning_rate": 0.017385934396195925,
1543
+ "loss": 2.9341,
1544
+ "step": 2560000
1545
+ },
1546
+ {
1547
+ "epoch": 26.28,
1548
+ "learning_rate": 0.01725727930505666,
1549
+ "loss": 2.9366,
1550
+ "step": 2570000
1551
+ },
1552
+ {
1553
+ "epoch": 26.38,
1554
+ "learning_rate": 0.017128624213917393,
1555
+ "loss": 2.9376,
1556
+ "step": 2580000
1557
+ },
1558
+ {
1559
+ "epoch": 26.49,
1560
+ "learning_rate": 0.016999969122778128,
1561
+ "loss": 2.9373,
1562
+ "step": 2590000
1563
+ },
1564
+ {
1565
+ "epoch": 26.59,
1566
+ "learning_rate": 0.01687131403163886,
1567
+ "loss": 2.9388,
1568
+ "step": 2600000
1569
+ },
1570
+ {
1571
+ "epoch": 26.69,
1572
+ "learning_rate": 0.016742658940499595,
1573
+ "loss": 2.9404,
1574
+ "step": 2610000
1575
+ },
1576
+ {
1577
+ "epoch": 26.79,
1578
+ "learning_rate": 0.016614003849360327,
1579
+ "loss": 2.9411,
1580
+ "step": 2620000
1581
+ },
1582
+ {
1583
+ "epoch": 26.9,
1584
+ "learning_rate": 0.016485348758221063,
1585
+ "loss": 2.943,
1586
+ "step": 2630000
1587
+ },
1588
+ {
1589
+ "epoch": 27.0,
1590
+ "learning_rate": 0.016356693667081795,
1591
+ "loss": 2.9421,
1592
+ "step": 2640000
1593
+ },
1594
+ {
1595
+ "epoch": 27.1,
1596
+ "learning_rate": 0.016228038575942526,
1597
+ "loss": 2.9313,
1598
+ "step": 2650000
1599
+ },
1600
+ {
1601
+ "epoch": 27.2,
1602
+ "learning_rate": 0.016099383484803262,
1603
+ "loss": 2.9337,
1604
+ "step": 2660000
1605
+ },
1606
+ {
1607
+ "epoch": 27.31,
1608
+ "learning_rate": 0.015970728393663994,
1609
+ "loss": 2.9341,
1610
+ "step": 2670000
1611
+ },
1612
+ {
1613
+ "epoch": 27.41,
1614
+ "learning_rate": 0.01584207330252473,
1615
+ "loss": 2.9353,
1616
+ "step": 2680000
1617
+ },
1618
+ {
1619
+ "epoch": 27.51,
1620
+ "learning_rate": 0.01571341821138546,
1621
+ "loss": 2.9359,
1622
+ "step": 2690000
1623
+ },
1624
+ {
1625
+ "epoch": 27.61,
1626
+ "learning_rate": 0.015584763120246196,
1627
+ "loss": 2.9363,
1628
+ "step": 2700000
1629
+ },
1630
+ {
1631
+ "epoch": 27.71,
1632
+ "learning_rate": 0.015456108029106928,
1633
+ "loss": 2.9387,
1634
+ "step": 2710000
1635
+ },
1636
+ {
1637
+ "epoch": 27.82,
1638
+ "learning_rate": 0.015327452937967662,
1639
+ "loss": 2.9388,
1640
+ "step": 2720000
1641
+ },
1642
+ {
1643
+ "epoch": 27.92,
1644
+ "learning_rate": 0.015198797846828394,
1645
+ "loss": 2.9399,
1646
+ "step": 2730000
1647
+ },
1648
+ {
1649
+ "epoch": 28.02,
1650
+ "learning_rate": 0.01507014275568913,
1651
+ "loss": 2.9384,
1652
+ "step": 2740000
1653
+ },
1654
+ {
1655
+ "epoch": 28.12,
1656
+ "learning_rate": 0.014941487664549863,
1657
+ "loss": 2.9305,
1658
+ "step": 2750000
1659
+ },
1660
+ {
1661
+ "epoch": 28.23,
1662
+ "learning_rate": 0.014812832573410595,
1663
+ "loss": 2.9325,
1664
+ "step": 2760000
1665
+ },
1666
+ {
1667
+ "epoch": 28.33,
1668
+ "learning_rate": 0.01468417748227133,
1669
+ "loss": 2.9332,
1670
+ "step": 2770000
1671
+ },
1672
+ {
1673
+ "epoch": 28.43,
1674
+ "learning_rate": 0.014555522391132062,
1675
+ "loss": 2.9339,
1676
+ "step": 2780000
1677
+ }
1678
+ ],
1679
+ "max_steps": 3911360,
1680
+ "num_train_epochs": 40,
1681
+ "total_flos": 1.8137583487197538e+20,
1682
+ "trial_name": null,
1683
+ "trial_params": null
1684
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a876127a938b0658e73b9e67b17c6b114dcc429c1afa69b822f1cfeec705061
3
+ size 3247
util.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import dataclasses as dc
3
+
4
+
5
+ @dc.dataclass
6
+ class CtrlArguments:
7
+ train_data: str = dc.field(
8
+ default="data/training_cunique_with_distractors.json",
9
+ metadata={"help": "A CSV list of training data files"}
10
+ )
11
+
12
+ formulation: str = dc.field(
13
+ default="areg_ltr",
14
+ metadata={"help": "Type of problem definition: autoregressive (areg) or u-PMLM (upmlm) or mixed (if predict_questions is set)"}
15
+ )
16
+
17
+ context_strategy: str = dc.field(
18
+ default="take_first",
19
+ metadata={"help": "How to deal with contexts greater than a specified length"}
20
+ )
21
+
22
+ tokenizer_file: str = dc.field(
23
+ default="tokenizer.json",
24
+ metadata={"help": "A JSON file (in the format provided by HuggingFace's tokenizers library) with a trained tokenizer"}
25
+ )
26
+
27
+ sequence_length: int = dc.field(
28
+ default=256,
29
+ metadata={"help": "The max sequence length"}
30
+ )
31
+
32
+ force_prepend_control: bool = dc.field(
33
+ default=False,
34
+ metadata={"help": "If the control code should be prepended for all sliding windows. Otherwise, it is only prepended at the start of the sequence"}
35
+ )
36
+
37
+
38
+ class GradientPrinter:
39
+ def __init__(self, name):
40
+ self.name = name
41
+
42
+ def __call__(self, grad):
43
+ np_grad = grad.cpu().numpy()
44
+ print("======== GRAD FOR {} ========".format(self.name))
45
+ print("\tGRAD {}".format(grad))
46
+ print("\tGRAD NORM {}".format(np.linalg.norm(np_grad)))
47
+ print("\tGRAD MEAN {}".format(np.mean(np_grad)))
48
+ print()