--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-Mid-NonMidMarket-Classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9148418491484185 --- # swin-tiny-patch4-window7-224-Mid-NonMidMarket-Classification This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co./microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2418 - Accuracy: 0.9148 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.4375 | 0.9836 | 30 | 0.4385 | 0.8564 | | 0.3408 | 2.0 | 61 | 0.2872 | 0.8978 | | 0.3106 | 2.9836 | 91 | 0.2598 | 0.9100 | | 0.3167 | 4.0 | 122 | 0.2609 | 0.9124 | | 0.2533 | 4.9836 | 152 | 0.2426 | 0.9075 | | 0.256 | 6.0 | 183 | 0.2372 | 0.9075 | | 0.2492 | 6.9836 | 213 | 0.2418 | 0.9148 | | 0.2364 | 8.0 | 244 | 0.2352 | 0.9051 | | 0.2301 | 8.9836 | 274 | 0.2348 | 0.9075 | | 0.2255 | 9.8361 | 300 | 0.2350 | 0.8978 | ### Framework versions - Transformers 4.42.3 - Pytorch 1.12.1+cu113 - Datasets 2.19.2 - Tokenizers 0.19.1